Hen Gwestiynau Arholiad

Papurau AQA

5 Two light inextensible strings, of lengths 0.4 m and 0.2 m, each have one end attached to a particle, *P*, of mass 4 kg. The other ends of the strings are attached to the points *A* and *B* respectively. The point *A* is vertically above the point *B*. The particle moves in a horizontal circle, centre *B* and radius 0.2 m, at a speed of 2 m s⁻¹. The particle and strings are shown in the diagram.

- (a) Calculate the magnitude of the acceleration of the particle. (2 marks)
- (b) Show that the tension in string PA is 45.3 N, correct to three significant figures.

 (4 marks)
- (c) Find the tension in string *PB*. (3 marks)
- A particle, P, of mass 3 kg is attached to one end of a light inextensible string. The string passes through a smooth fixed ring, Q, and a second particle, Q, of mass 5 kg is attached to the other end of the string. The particle Q hangs at rest vertically below the ring and the particle P moves with speed 4 m s⁻¹ in a horizontal circle, as shown in the diagram.

The angle between OP and the vertical is θ .

- (a) Explain why the tension in the string is 49 N. (2 marks)
- (b) Find θ . (3 marks)
- (c) Find the radius of the horizontal circle. (4 marks)

A particle is attached to one end of a light inextensible string. The other end of the string is attached to a fixed point O. The particle is set into motion, so that it describes a horizontal circle whose centre is vertically below O. The angle between the string and the vertical is θ , as shown in the diagram.

(a) The particle completes 40 revolutions every minute.

Show that the angular speed of the particle is $\frac{4\pi}{3}$ radians per second. (2 marks)

(b) The radius of the circle is 0.2 metres.

Find, in terms of π , the magnitude of the acceleration of the particle. (2 marks)

- (c) The mass of the particle is $m \log n$ and the tension in the string is T newtons.
 - (i) Draw a diagram showing the forces acting on the particle. (1 mark)
 - (ii) Explain why $T \cos \theta = mg$. (1 mark)
 - (iii) Find the value of θ , giving your answer to the nearest degree. (5 marks)
- 5 A car of mass $1200 \,\mathrm{kg}$ travels round a roundabout on a horizontal, circular path at a constant speed of $14 \,\mathrm{m\,s^{-1}}$. The radius of the circle is 50 metres. Assume that there is no resistance to the motion of the car and that the car can be modelled as a particle.
 - (a) A friction force, directed towards the centre of the roundabout, acts on the car as it moves. Show that the magnitude of this friction force is 4704 N. (4 marks)
 - (b) The coefficient of friction between the car and the road is μ . Show that $\mu \geqslant 0.4$.

 (3 marks)