[5]

[5]

Hen Gwestivnau Arholiad

Complex Transformations

(Haf 2005)

7. The complex numbers z and w are represented, respectively, by the points P(x, y) and Q(u, v) in Argand diagrams and

$$w = \frac{1}{z} .$$

(a) Show that

$$x = \frac{u}{u^2 + v^2}$$

and obtain an expression for y in terms of u and v.

(b) The point P moves along the circle $x^2 + y^2 = 2$. Find the equation of the locus of Q in the (u, v) plane. [3]

(Gaeaf 2006)

10. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = \frac{z+3}{z+1}.$$

The point P moves around the circle with equation |z| = 1. Find the Cartesian equation of the locus of Q. Identify this locus. [8]

(Haf 2006)

10. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z^2$$
.

The point P moves along the line y = x - 1. Find the Cartesian equation of the locus of Q. [8]

(Gaeaf 2007)

- 9. The complex number z is represented by the point P(x, y) in an Argand diagram.
 - (a) Given that

$$|z-3| = |z+i|,$$

find the Cartesian equation of the locus of P.

(b) Find the coordinates of the two points lying on this locus for which |z| = 4. [7]

/11	٦f	2	\sim	\sim	7	۱
(H	af	_	υ	U	1)

9.	The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in
	Argand diagrams and

$$w = z^2$$
.

- (a) Obtain expressions for u and v in terms of x and y. [3]
- (b) The point P moves along the curve with equation $y^2 = 2x^2 1$. Find the Cartesian equation of the locus of Q. [6]

(Gaeaf 2008)

8. The complex number z is represented by the point P(x, y) in the Argand diagram. Given that

$$|z-1| = \sqrt{2} |z-i|,$$

show that the locus of P is a circle, and find its radius and the coordinates of its centre. [7]

(Haf 2008)

9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = \frac{1}{z+1} \quad .$$

(a) By first writing

$$z+1=\frac{1}{w} \quad ,$$

show that

$$x + 1 = \frac{u}{u^2 + v^2}$$

and find an expression for y in terms of u and v.

(b) The point P moves along the circle $(x + 1)^2 + y^2 = 4$. Find the equation of the locus of Q. [4]

[4]

[4]

(Gaeaf 2009)

8. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z(1 - z).$$

(a) Show that

$$v = y(1 - 2x)$$

and find an expression for u in terms of x and y.

(b) The point P moves along the line y = x. Find the Cartesian equation of the locus of Q. [4]

7. The complex number z is represented by the point P(x, y) in the Argand diagram. Given that

$$|z-1|=2|z+2|,$$

show that the locus of P is a circle, and find its radius and the coordinates of its centre. [7]

(Gaeaf 2010)

- **9.** The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and $w = 1 + z^2$.
 - (a) Obtain expressions for u and v in terms of x and y. [4]
 - (b) The point P moves along the line y = 2x. Find the equation of the locus of Q. [4]

(Haf 2010)

9. The complex numbers z and w are represented, respectively, by points P(x,y) and Q(u,v) in Argand diagrams and

$$w = \frac{1}{1-z} \ .$$

- (a) Obtain expressions for u and v in terms of x and y.
- (b) The point P moves along the line y = 1 x. Find the equation of the locus of Q. [2]

[4]

(c) Find the coordinates of the points in the z-plane which are transformed to points with the same coordinates in the w-plane. [4]

(Gaeaf 2011)

- 9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and $w = z^2$.
 - (a) Obtain expressions for u and v in terms of x and y. [3]
 - (b) The point P moves along the curve with equation $y = x^2$. Find the equation of the locus of Q, giving your answer in the form u = f(v). [3]
 - (c) The point $R(\alpha, 16)$ lies on the locus of Q.
 - (i) Find the value of α .
 - (ii) Find the coordinates of the point on the locus of P which corresponds to R. [4]

10.	The complex numbers z and w are represented, respect	ively, by points $P(x, y)$ and $Q(u, v)$ in
	Argand diagrams and	

$$w = \frac{1}{z^2} .$$

(a) Show that

$$u = \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2}$$

and obtain an expression for v in terms of x and y.

[3]

- (b) The point P moves along the line L with equation y = mx.
 - (i) Show that the locus of Q is the line L' with equation of the form v = m'u and find an expression for m' in terms of m.
 - (ii) Determine the values of m for which L and L' have the same gradient. [7]

(Gaeaf 2012)

8. The complex number z is represented by the point P(x, y) in the Argand diagram. Given that $|z - \mathbf{i}| = 2|z + \mathbf{i}|$,

show that the locus of P is a circle and find its radius and the coordinates of its centre. [8]

(Haf 2012)

9. The complex numbers z and w are represented by points P(x, y) and Q(u, v) respectively in Argand diagrams and

$$wz = 1$$
.

(a) Show that

$$x = \frac{u}{u^2 + v^2}$$

and obtain an expression for y in terms of u and v.

[3]

- (b) The point P moves along the line y = mx + 1.
 - (i) Show that the locus of Q is a circle.
 - (ii) Determine the radius and the coordinates of the centre C of the circle.
 - (iii) Write down the equation of the locus of C as m varies. [7]

9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z(z + 1)$$
.

(a) Show that

$$v = (2x + 1)v$$

and obtain an expression for u in terms of x and y.

(b) The point P moves along the line y = x + 1. Find the equation of the locus of Q, giving your answer in the form $y = au^2 + bu$ where a, b are positive integers. [7]

[3]

[4]

(Haf 2013)

8. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z^2$$
.

- (a) Obtain expressions for u and v in terms of x and y.
- (b) The point P moves along the curve with equation $y^2 2x^2 = 1$. Find the equation of the locus of Q. [5]

(Gaeaf 2014)

- **9.** The complex number z is represented by the point P(x, y) in the Argand diagram. Given that |z 2| = 2|z + i|,
 - (a) show that it can be deduced immediately that the locus of *P* passes through the origin, [2]
 - (b) show that the locus of P is a circle, and find its radius and the coordinates of its centre. [7]

(Haf 2014)

9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z(z - 1).$$

- (a) Obtain expressions for u and v in terms of x and y. [4]
- (b) The point P moves along the line x + y = 0. Find the equation of the locus of Q. [5]

(Haf 2015)

10.	The	compl	ex number z is represented by the point $P(x, y)$ in the Argand diagram and				
			z+3 = k z-i ,				
	wher	e k is	a real positive constant.				
	(a) When $k \neq 1$, the locus of P is a circle. Find, in terms of k ,						
		(i) (ii)	the equation of the circle, the coordinates of the centre of the circle.	[7]			
	(b)	(i) (ii)	Write down the equation of the locus of P when $k=1$. Give a geometric interpretation of this locus.	[2]			
Haf 2	2016)						
9.			lex numbers z and w are represented, respectively, by points $P(x,y)$ and $Q(u,y)$, <i>v</i>) in			
			$w = (z + 2i)^2.$				
	(a)	Obta	ain expressions for u and v in terms of x and y .	[4]			
	(b)	The	point <i>P</i> moves along the line $y = x - 1$. Find the equation of the locus of <i>Q</i> .	[4]			
Haf 2	2017)						
8.			ex numbers z and w are represented, respectively, by points $P(x,y)$ and $\mathbf{Q}(u,y)$	v) in			
			wz = 1.				
	(a)	Obta	ain expressions for x and y in terms of u and v .	[4]			
	(b)	Give	In that the point P moves along the line $x + y = 1$,				
		(i)	show that the locus of Q is a circle,				
		(ii)	determine the radius and the coordinates of the centre C of the circle.	[6]			
	(c)	Give <i>P</i> an	n that P and Q have the same coordinates, find the two possible positions of d Q .	[3]			

/11	٦f	2	\sim	1	o١
(H	aп	_	υ	T	Οl

8.	The comple	ex number z is	represented b	v the	point $P(x,$	v) ir	the Ar	gand diag	ram and
•	THE COMP		roprocented b	y ti io	On it 7 (50,	y j = 11	1 (110 / (1)	garia alagi	ann ana

$$|z + 2i| = 2|z - 3|$$
.

(a) Show that the locus of P is a circle.

[4]

(b) Find its radius and the coordinates of its centre.

[3]

(Haf 2019)

9. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z^2 - z - i$$
.

(a) Show that

$$u = x^2 - y^2 - x$$

and find an expression for v in terms of x and y.

[4]

(b) The point P moves along the line y = x - 1. Determine the equation of the locus of Q. [4]