Hen Gwestiynau Arholiad

Induction

(Haf 2005)

Use mathematical induction to prove that

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^n = \begin{bmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{bmatrix}$$

for all positive integers n.

[7]

(Gaeaf 2006)

Consider the proposition P given by

'
$$\sum_{r=1}^{n} (2r+1) = (n+1)^2$$
 where *n* is a positive integer.'

- Show that if P is true for n = k, then it is true for n = k + 1. [5] (a)
- Explain why it cannot be deduced, using mathematical induction, that P is true for all positive integers n. Show that P is in fact false.

(Haf 2006)

Use mathematical induction to show that $9^n - 5^n$ is divisible by 4 for all positive integers n. [7]

(Gaeaf 2007)

Use mathematical induction to show that $6^n + 4$ is divisible by 5 for all positive integers n.

[7]

(Haf 2007)

Use mathematical induction to show that

$$\sum_{r=1}^{n} \left[r \times \left(\frac{1}{2}\right)^r \right] = 2 - \left(n+2\right) \left(\frac{1}{2}\right)^n$$

for all positive integers n.

[8]

(Gaeaf 2008)

7. Use mathematical induction to show that

$$\sum_{r=1}^{n} r \times 2^{r} = 2^{n+1} (n-1) + 2$$

for all positive integers n.

[8]

(Haf 2008)

5. Use mathematical induction to show that $7^n + 5$ is divisible by 6 for all positive integers n. [7]

(Gaeaf 2009)

6. Use mathematical induction to show that

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 2n & 2n^2 \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{bmatrix}$$

for all positive integers n.

[8]

(Haf 2009)

5. Use mathematical induction to prove that

$$\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1} \quad .$$

for all positive integers n.

[8]

(Gaeaf 2010)

6. (a) Use mathematical induction to prove that

$$1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n+1)! - 1$$

for all positive integers n.

[6]

(b) Given that

$$S_n = \sum_{r=1}^n r(3r+1) ,$$

obtain an expression for S_n in terms of n, simplifying your answer.

[5]

(Haf 2010)

5. Use mathematical induction to prove that $4^{2n} - 1$ is divisible by 15 for all positive integers n. [6]

(Gaeaf 2011)

5. Use mathematical induction to prove that

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^n = \begin{bmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{bmatrix}$$

for all positive integers n.

[7]

6. Use mathematical induction to prove that $6^n + 4$ is divisible by 10 for all positive integers n. [7]

(Gaeaf 2012)

6. Use mathematical induction to prove that, for all positive integers n,

$$\sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(n+2)}{3}.$$
 [6]

[7]

[7]

[7]

(Haf 2012)

6. Use mathematical induction to prove that $n^3 + 2n$ is divisible by 3 for all positive integers n. [7]

(Gaeaf 2013)

6. Use mathematical induction to prove that

$$\sum_{r=1}^{n} r^3 = \frac{n^2 (n+1)^2}{4}$$

for all positive integers n.

(Haf 2013)

- 5. Using mathematical induction, prove that $7^n 1$ is divisible by 6 for all positive integers n. [6] (Gaeaf 2014)
 - 6. (a) Use mathematical induction to prove that

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^n = \begin{bmatrix} 1 & 3^n - 1 \\ 0 & 3^n \end{bmatrix}$$

for all positive integers n.

(b) Determine whether or not this result is true for n = -1. [3]

(Haf 2014)

8. Using mathematical induction, prove that

$$\sum_{r=1}^{n} (r \times 2^{r-1}) = 1 + 2^{n} (n-1),$$

for all positive integers n.

(Haf 2015)

8. The matrix A is given by

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.$$

(a) Show that

$$\mathbf{A}^2 = 2\mathbf{A} - \mathbf{I},$$

where I denotes the 2×2 identity matrix.

natrix. [2]

(b) Using mathematical induction, prove that

$$\mathbf{A}^n = n\mathbf{A} - (n-1)\mathbf{I}$$

for all positive integers n.

[6]

(Haf 2016)

7. The sequence x_1, x_2, x_3, \dots is generated by the relationship

$$x_{n+1} = 2x_n - n + 1$$
 where $x_1 = 3$.

Use mathematical induction to prove that

$$x_n = 2^n + n$$

for all positive integers n.

[6]

(Haf 2017)

6. Use mathematical induction to prove that $9^n - 1$ is divisible by 8 for all positive integers n. [7]

(Haf 2018)

7. Use mathematical induction to prove that

$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

for all positive integers n.

[7]

(Haf 2019)

8. Use mathematical induction to prove that $5^n - (-1)^n$ is divisible by 6 for all positive integers n.

[6]