

GCE AS/A Level – LEGACY

0983/01

MATHEMATICS – S1 Statistics

WEDNESDAY, 12 JUNE 2019 – MORNING 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- · a Formula Booklet;
- · a calculator;
- statistical tables (Murdoch and Barnes or RND/WJEC Publications).

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

© WJEC CBAC Ltd. CJ*(S19-0983-01)

1.	The random	variable 2	Y has a	Poisson	distribution	with	mean	4.
	Calculate							

(a)
$$E(X^2)$$
, [3]

(b)
$$P(X \ge 2 \mid X \ge 1)$$
. [3]

- 2. A bag contains 12 balls of which 5 are red, 4 are blue and 3 are white. A random selection of 3 of these balls is made, without replacement. Calculate the probability that the selection contains 2 balls of the same colour and another ball of a different colour. Give your answer in the form $\frac{N}{44}$, where N is an integer. [6]
- 3. The events A and B are such that

$$P(A) = 0.3, P(B) = 0.2.$$

- (a) Given that $P(A \cup B) = 0.44$, show that A and B are independent. [4]
- (b) Given instead that $P(A \cup B) = 0.4$, calculate
 - (i) $P(A \mid B)$,

(ii)
$$P(A \mid B')$$
. [7]

- **4.** Bethan plays the following game. She throws a fair six-sided dice. If she obtains a '1', she tosses two fair coins. If she obtains a '2' or a '3', she tosses three fair coins. If she obtains a '4', '5' or '6', she tosses four fair coins.
 - (a) Calculate the probability that all the coins tossed fall 'heads'. [3]
 - (b) Given that all the coins tossed fall 'heads', calculate the probability that she obtained a '1' when she threw the dice. [3]
- 5. (a) The number of letters, X, arriving each morning at a house may be modelled by a Poisson distribution with mean 5. Determine the probability that, on a randomly chosen day, the number of letters arriving is
 - (i) equal to 2,
 - (ii) more than 3. [4]
 - (b) The number of letters, Y, arriving each morning at another house may be modelled by a Poisson distribution with mean μ . Given that

$$P(Y = 2) = P(Y = 0 \text{ or } Y = 1),$$

determine the value of μ .

[5]

6. The discrete random variable *X* has the following probability distribution,

$$P(X = x) = kx$$
 for $x = 1, 2, 3, 4, 5,$
 $P(X = x) = 0$ otherwise,

where k is a constant.

(a) Show that
$$k = \frac{1}{15}$$
. [2]

- (b) Calculate
 - (i) E(X),

(ii)
$$E\left(\frac{1}{X}\right)$$
.

- (c) Two independent observations X_1 , X_2 are taken from the distribution of X. Determine the value of $P(X_1 + X_2 = 4)$. [3]
- 7. Jim decides to try his luck at a rifle range at a fairground so he pays £6 for 5 shots at a target. You may assume that the probability of each shot hitting the target is 0.3 and that successive shots are independent. Let X denote the number of shots that hit the target.
 - (a) State the distribution of X, including its parameters. [2]
 - (b) (i) Determine the mean and the variance of X.
 - (ii) Without the use of tables, calculate P(X = 2).

(iii) Find
$$P(2 \le X \le 4)$$
. [6]

- (c) Jim is given a reward of £2.50 for every shot that hits the target. Given that £P denotes his overall profit from firing the 5 shots,
 - (i) write down an expression for P in terms of X,
 - (ii) calculate the mean and the variance of P. [5]

TURN OVER

8. The continuous random variable X has probability density function f given by

$$f(x) = \frac{3}{4}x^{2}(2-x) \qquad \text{for } 0 \leqslant x \leqslant 2,$$

$$f(x) = 0 \qquad \text{otherwise.}$$

- (a) (i) Determine the mean of X.
 - (ii) The mode of X is defined as the value of x which maximises f(x). Determine the mode of X. [7]
- (b) (i) Find an expression for F(x), valid for $0 \le x \le 2$, where F denotes the cumulative distribution function of X.
 - (ii) Show that the median of X lies between the mean and the mode. [6]

END OF PAPER