

GCE AS/A Level – LEGACY

0979/01

MATHEMATICS – FP3 Further Pure Mathematics

TUESDAY, 26 JUNE 2018 – MORNING 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- · a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function f is defined by

$$f(x) = \cosh^3 x - 2\sinh x.$$

(a) Obtain an expression for f'(x).

[2]

[7]

- (b) Determine the *x*-coordinate of the stationary point on the graph of *f*. Give your answer correct to three significant figures. [5]
- **2.** The function f is defined by

$$f(x) = \ln(\cos x)$$
.

- (a) Find the Maclaurin series for f(x) as far as the term in x^4 .
- (b) Use your series to deduce the first two non-zero terms in the Maclaurin series for
 - (i) $\ln(\sec^2 x)$,
 - (ii) $\tan x$. [5]
- 3. Determine the value of the integral

$$\int_0^{\frac{\pi}{3}} e^{2x} \sin 3x \, dx.$$

Give your answer in the form $a(1 + e^{b\pi})$, where a, b are fractions.

[8]

- **4.** (a) Sketch the curve C with polar equation $r = 1 \cos \theta$, $0 \le \theta \le \pi$. [1]
 - (b) Find the polar coordinates of the point on *C*, other than the origin, at which the tangent to *C* is parallel to the initial line. [7]
 - (c) Find the area of the region enclosed by C and the initial line. [5]
- 5. (a) Show that the length L of the arc joining the points (1, 2) and (4, 4) on the curve with equation $y^2 = 4x$ is given by

$$\int_{1}^{4} \sqrt{\left(1 + \frac{1}{x}\right)} \, \mathrm{d}x \ . \tag{4}$$

(b) Use the substitution $x = \sinh^2 u$ to determine the value of L correct to three significant figures. [8]

6. The equation $\sinh\theta = \cos\theta$ has a root close to 0·7. In order to obtain an accurate approximation to this root, it is proposed to use one of the following iterative sequences.

A:
$$\theta_{n+1} = \sinh^{-1}(\cos\theta_n)$$
, $\theta_0 = 0.7$

B:
$$\theta_{n+1} = \cos^{-1}(\sinh \theta_n)$$
, $\theta_0 = 0.7$

- (a) Show by differentiation that one of these sequences is convergent and the other sequence is divergent. [8]
- (b) Use the convergent sequence to find the value of the root correct to three decimal places.
- **7.** The integral I_n is given, for $n \ge 0$, by

$$I_n = \int_1^2 x^2 (\ln x)^n \mathrm{d}x.$$

(a) Show that, for $n \ge 1$,

$$I_n = \frac{8}{3} (\ln 2)^n - \frac{n}{3} I_{n-1}.$$
 [5]

(b) Hence determine the value of I_3 , giving your answer correct to three significant figures. [6]

END OF PAPER