

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)
MATHEMATICS
UNIT 1 PURE MATHEMATICS A
2300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS MATHEMATICS

UNIT 1 PURE MATHEMATICS A

SUMMER 2022 MARK SCHEME

Q Solution

Mark Notes

 $1 y = \ln x$

B1 Allow $y = \log_e x$

May be seen on graph

B1 graph of $y = e^x$ and (0,1)

B1 graph of $y = \ln x$ and (1,0)

If B0 B0

SC1 both graphs correctly drawn, but intercepts missing or incorrect

OR

SC1 correct intercepts but incorrect graphs

Mark Notes

$$2 \qquad 5\sqrt{48} = 20\sqrt{3}$$

$$(2\sqrt{3})^3 = 24\sqrt{3}$$

$$\frac{2+5\sqrt{3}}{5+3\sqrt{3}} = \frac{\left(2+5\sqrt{3}\right)(5-3\sqrt{3})}{\left(5+3\sqrt{3}\right)(5-3\sqrt{3})}$$

M1 multiplying by conjugateM0 if multiplying by conjugate not shown

$$=-\frac{1}{2}(10-6\sqrt{3}+25\sqrt{3}-45)$$

A1 for numerator

A1 for denominator (25 - 27)

$$= -\frac{1}{2}(19\sqrt{3} - 35)$$

Expression =
$$\frac{1}{2}(35 - 27\sqrt{3})$$

A1 cao, any correct simplified form

Mark Notes

3(a) Grad. of $L_1 = \frac{increase in y}{increase in x}$

M1

Grad. of $L_1 = \frac{-1-5}{3-0} = -2$

A1

Equ of L_1 is y - 5 = -2x

A1 any correct form

Mark final answer

$$y + 2x = 5$$

3(b) $y = \frac{1}{2}x$

B1 ft grad L_1 any correct form

Mark final answer

3(c) At C, $\frac{1}{2}x + 2x = 5$

M1 oe

x = 2, y = 1

A1 ft their (a) and (b)

C is the point (2, 1)

Area $OAC = \frac{1}{2} \times OA \times (x\text{-coord of } C)$

M1

Area $OAC = (\frac{1}{2} \times 5 \times 2) = 5$

A1 ft their 'x-coord of C'

OR

Area $OAC = \frac{1}{2} \times OC \times AC$

(M1)

$$OC = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$AC = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$$

Area $OAC = (\frac{1}{2} \times \sqrt{5} \times 2\sqrt{5}) = 5$

(A1) ft their coordinates of C

Mark Notes

3(d) Gradient of $L_3 = -2$

M1

Either

Equ of L_3 is y - 2 = -2(x - 4)

A1 ft their gradient of L_1 any correct form ISW

OR

Equ of L_3 is y = -2x + c

$$2 = -2 \times 4 + c$$

$$c = 10$$

Equ of L_3 is y = -2x + 10

(A1) ft their gradient of L_1

3(e) Using similar triangles,

Area
$$ODE = 2^2 \times 5 = 20$$

B1 ft their (c)

OR

Area = $\frac{1}{2} \times OE \times (x\text{-coord of }D)$

$$Area = \frac{1}{2} \times 10 \times 4 = 20$$

(B1)

Mark Notes

$$4 x^2 + 3x - 6 > 4x - 4$$

$$x^2 - x - 2 > 0$$

terms all collected on one side

$$(x+1)(x-2) (> 0)$$

Critical values, -1 and 2

$$x < -1 \text{ or } x > 2$$

Solution

Mark Notes

 $-x^2 + 2x + 3 = x^2 - x - 6$ 5(a)

M1

$$2x^2 - 3x - 9 = 0$$

A1

$$(2x+3)(x-3) = 0$$

$$x = -\frac{3}{2},3$$

or one correct pair **A**1

A0 A0 if no workings seen

 $y=-\frac{9}{4}\,,\,0$

A1 all correct

$$A(-\frac{3}{2}, -\frac{9}{4})$$
 $B(3,0)$

or other way round

If 0 marks, award SC1 for sight of (3,0)

5(b)

M1 at least one quadratic curve

A1 one cup, one hill

A1 graphs all correct with correct points of intersection FT points of intersection where possible

- 5(c) Area enclosed by curves to the right of the y-axis ft for equivalent diagram
 - B1 for 1 correct region
 - B1 for 2nd correct region
 - -1 for each additional incorrect region

Mark Notes

6(a) Statement B is false

Two negative numbers:

Correct choice of numbers, eg

$$x = -25, y = -4,$$

M1

Correct verification, eg

$$x + y = -29$$

$$2\sqrt{xy} = 2 \times \sqrt{(-25) \times (-4)}$$

A1 both substitutions

$$2\sqrt{xy} = 20$$

Since -29 < 20 statement *B* is false.

A1 oe

One positive number, one negative number:

Correct choice of numbers, eg

$$x = 1, y = -4,$$

(M1)

Correct verification, eg

$$x + y = -3$$

$$2\sqrt{xy} = 2 \times \sqrt{(1) \times (-4)}$$

(A1) both substitutions

$$2\sqrt{xy} = 2\sqrt{-4}$$

 $2\sqrt{-4}$ is not real, statement *B* is false.

(A1) oe

Mark Notes

6(b) Statement A is true

Either

$$x^2 + y^2 \ge 2xy$$

$$x^2 - 2xy + y^2 \ge 0$$

M1

$$(x - y)^2 \ge 0$$
, which is always true

A1

Therefore, Statement A is true

OR

Consider
$$(x - y)^2 \ge 0$$

(M1)

$$x^2 - 2xy + y^2 \ge 0$$

$$x^2 + y^2 \ge 2xy$$

(A1)

Mark Notes

7(a) A(2, 3)

B1

A correct method for finding the radius,

e.g.,
$$(x-2)^2 + (y-3)^2 = 4^2$$

M1

Radius
$$= 4$$

A1

7(b) At points of intersection

$$x^{2} + (x+5)^{2} - 4x - 6(x+5) - 3 = 0$$

M1

$$2x^2 - 8 = 0$$

A1 oe or $2y^2 - 20y + 42 = 0$ All terms collected

$$x = -2, 2$$

A1 or y = 3, 7

or 1 correct pair

$$y = 3, 7$$

A1 or x = -2, 2

all correct

$$P(-2, 3)$$
 $Q(2,7)$

or P(2,7), Q(-2,3)

7(c) Attempt to find, B, the midpoint of PQ

M1 ft their P and Q

B(0, 5)

$$PB = \sqrt{(-2-0)^2 + (3-5)^2} = \sqrt{8} = 2\sqrt{2}$$

A1 ft their P and Q

OR

$$PB = \frac{1}{2}PQ = \frac{1}{2}\sqrt{(-2-2)^2 + (3-7)^2}$$
 (M1)

$$PB = \frac{1}{2} 4\sqrt{2}$$

$$PB = 2\sqrt{2}$$

(A1) ft their P and Q

7(d) Area = quarter circle – triangle
$$APQ$$
 M1

Area =
$$\frac{1}{4} \times \pi \times 4^2 - \frac{1}{2} \times 4 \times 4$$
 A1

Area =
$$4\pi - 8$$
 answer given

8(a)

B1 Straight line through the origin, positive or negative gradient

8(b) Mary's pay =
$$120 \times \frac{2}{3}$$

oe e.g.
$$3m = 120$$

$$M1$$
 oe \times by 2

Unsupported answer of £80

award M1A1A1

$$8(c) \qquad P = 1013 \times 0.88^{\frac{H}{1000}}$$

When
$$H = 8848$$
, $P = 1013 \times 0.88^{\frac{8848}{1000}}$

M1 e.g.
$$P = 1013 \times 0.88^H$$

Allow $P = 1013 \times 0.988^H$

$$P = 326.8828$$
 or 327 (units)

Mark Notes

9 Discriminant = $(2k)^2 - 4 \times 1 \times 8k$

B1 An expression for $b^2 - 4ac$

Discriminant = $4k^2 - 32k$

If no real roots, discriminant < 0

M1 May be implied by later work
M0 if discriminant given in terms
of *k* and *x*

k(k - 8) < 0

Critical values, k = 0, 8

B1 si ft their quadratic discriminant if B0 awarded previously

0< *k* < 8

A1 ft their 2 critical values provided M1 awarded

Mark Notes

 $10 \qquad \ln 2^x = \ln 53$

M1 taking ln or log to any base of both sides.

 $x \ln 2 = \ln 53$

A1 use of power law

$$x = \frac{\ln 53}{\ln 2}$$

x = 5.727920455

x = 5.73

A1 cao Must be to 2dp

Note:

- No workings M0
- $x = \log_2 53$, award M1A1

Mark Notes

 $11(a) \quad \frac{dy}{dx} = 10 + 6x - 3x^2$

M1 At least one correct term

Attempt to find $\frac{dy}{dx}$ at x = 2

m1

Grad of tangent at C = 10

A1 cao

Equation of tangent at C is

$$y - 24 = 10(x - 2)$$

m1 oe

$$y = 10x + 4$$

D is the point (0, 4)

A1 cao

11(b) Area of trapezium = $\frac{1}{2}(4 + 24) \times 2 (= 28)$

B1 ft their D(0,k), 0 < k < 24

A under curve = $\int_0^2 (10x + 3x^2 - x^3) dx$

attempt to integrate, at least one term correct, limits not required

 $= \left[5x^2 + x^3 - \frac{x^4}{4}\right]_0^2$

A1 correct integration, limits not required

=(20+8-4)-(0)

m1 use of limits

(= 24)

Shaded area = area (trap - under curve)

m1

M1

Shaded area = 4

A1 cao

Note: Must be supported by workings

Mark Notes

 $11(c) \quad \frac{dy}{dx} = 10 + 6x - 3x^2$

FT their $\frac{dy}{dx}$ where possible

At stationary points, $\frac{dy}{dx} = 0$

M1

$$10 + 6x - 3x^2 = 0$$

$$3x^2 - 6x - 10 = 0$$

$$x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times (-10)}}{6}$$

m1 attempt to solve quadratic

$$x = -1.08, 3.08$$
 or $\frac{3 \pm \sqrt{39}}{3}$

A1 any correct form

Required range is -1.08 < x < 3.08

A1

(M1)

Alternative Solution

11(c) $f'(x) = 10 + 6x - 3x^2$

FT their f'(x) where possible

For increasing function, f'(x) > 0

 $10 + 6x - 3x^2 > 0$

$$3x^2 - 6x - 10 < 0$$

$$x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times (-10)}}{6}$$

(m1) attempt to solve quadratic

$$x = -1.08, 3.08$$
 or $\frac{3 \pm \sqrt{39}}{3}$

(A1) any correct form

Required range is -1.08 < x < 3.08

(A1)

Mark Notes

12(a) $f(x) = 2x^3 - x^2 - 5x - 2$

$$f(-1) = -2 - 1 + 5 - 2 = 0$$

M1 one use of factor theorem

(x + 1) is a factor

A1 oe

$$f(x) = (x+1)(2x^2 + px + q)$$

M1 at least one of p, q correct

$$f(x) = (x+1)(2x^2-3x-2)$$

A1 oe (see note below*) cao

$$f(x) = (x+1)(2x+1)(x-2)$$

m1 coeffs of x^2 multiply to give 2 constant terms multiply to their q or formula with correct a,b,c

$$x = -1, -\frac{1}{2}, 2$$

A1 cao

Note:

• Answers only with no workings 0 marks

•
$$* f(x) = (x-2)(2x^2 + 3x + 1)$$

•
$$*f(x) = (2x + 1)(x^2 - x - 2)$$

12(b) $\cos(2\theta - 51^{\circ}) = 0.891$

$$2\theta - 51^{\circ} = 27^{\circ}, (-27^{\circ})$$

B1

$$\theta = 39^{\circ}$$

B1

$$\theta = 12^{\circ}$$

B1

-1 each extra root up to 2

Ignore roots outside $0^{\circ} < \theta < 180^{\circ}$

Mark Notes

13 Required term = $\binom{5}{3}(2)^{5-3}(-3)^3$

B1 $\binom{5}{3}$ oe

B1 (2)⁵⁻³ oe

B1 $(-3)^3$ oe

Required term = $10 \times 4 \times (-27)$

Required term = -1080

B1 ISW

Mark Notes

14(a) Attempt to differentiate

M1

 $f'(x) = 9x^2 - 10x + 1$

A1

 $9x^2 - 10x + 1 = 0$

m1

- (9x-1)(x-1)=0
- $x = \frac{1}{9}$, $y = -\frac{1445}{243} = -5.9465$

A1 or $x = \frac{1}{9}$, 1

x = 1, y = -7

A1 all correct

f''(x) = 18x - 10

M1 oe ft quadratic f'(x)

 $x = \frac{1}{9}$, (f(x) = -5.9465) is a maximum

A1 ft their x value

- x = 1, (f(x) = -7) is a minimum
- A1 ft their *x* value provided different conclusion

Note: if f''(x) is incorrectly found from their f'(x), maximum marks M1A1A0

14(b)(i)Rewriting the equation

To give $f(x) = 3x^3 - 5x^2 + x - 6$ on one side. M1 oe

 $3x^3 - 5x^2 + x - 6 = -7,$

2 (distinct roots)

A1

14(b)(ii) To give $f(x) = 3x^3 - 5x^2 + x - 6$ on one side M1 oe

 $3x^3 - 5x^2 + x - 6 = -6.5$

3 (distinct roots)

A1

Note: 14b - 0 marks for unsupported answers

15
$$\frac{(x^2y)^3}{x^2y^2} \times \frac{9}{x^2y^2} = 36$$

$$4y = x^2$$

$$\log_a\left(\frac{y}{x+3}\right) = \log_a 1$$

$$y = x + 3$$

$$4y = 4x + 12 = x^2$$

$$x^2 - 4x - 12 = 0$$

$$(x+2)(x-6)=0$$

$$x = -2, 6$$

$$y = 1, 9$$

$$x = -2$$
 and $y = 1$, $x = 6$ and $y = 9$

Mark Notes

B1 one use of subtraction law

B1 one use of addition law

B1 one use of power law

B1 oe for a correct equation after the removal of logs

(B1) for use of the subtraction law if not previously awarded.

B1 or
$$x = y - 3$$

M1 or
$$4y = (y-3)^2$$

or
$$y^2 - 10y + 9 = 0$$

or
$$(y-1)(y-9) = 0$$

A1 cao or
$$y = 1, 9$$

or 1 correct pair

A1 cao or
$$x = -2$$
, 6 all correct

OR

$$3(2\log_a x + \log_a y) - 2(\log_a x + \log_a y)$$

$$+\log_a 9 - 2(\log_a x + \log_a y) = \log_a 36$$

 $2\log_a x - \log_a y = \log_a 4$

$$\log_a y - \log_a (x+3) = 0$$

$$2\log_a x - \log_a (x+3) = \log_a 4$$

$$x^2 - 4x - 12 = 0$$

$$(x+2)(x-6)=0$$

$$x = -2, 6$$

$$y = 1, 9$$

$$x = -2$$
 and $y = 1$, $x = 6$ and $y = 9$

(B1B1B1) one for each use of laws

(B1) correct equation

(M1) solve simultaneously

(A1)

(A1)

(A1)

Mark Notes

16(a)
$$|\mathbf{a}| = \sqrt{2^2 + 1^2}$$

M1 correct method

$$|\mathbf{a}| = \sqrt{5}$$

Required unit vector = $\frac{1}{\sqrt{5}}(2\mathbf{i} - \mathbf{j})$

A1

16(b)
$$\theta = \tan^{-1}(\pm 3)$$

M1

$$\theta = (\pm)71.6^{\circ} (288.4^{\circ})$$

A1 Accept 72° or 288°

$$16(\mathbf{c})(\mathbf{i})\mu\mathbf{a} + \mathbf{b} = \mu (2\mathbf{i} - \mathbf{j}) + (\mathbf{i} - 3\mathbf{j})$$

B1 Mark final answer

$$\mu \mathbf{a} + \mathbf{b} = (2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j}$$

16(c)(ii)If parallel to 4i - 5j,

$$(2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j} = k(4\mathbf{i} - 5\mathbf{j})$$

M1 or $k((2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j}) = (4\mathbf{i} - 5\mathbf{j})$ Both sides in terms of \mathbf{i} and \mathbf{j}

$$2\mu + 1 = 4k$$
 and $\mu + 3 = 5k$

A1 ft(c)(i)

Solving simultaneously

m1 any correct method

$$(k = \frac{5}{6})$$

$$\mu = \frac{7}{6}$$

A1 cao

Alternative solution

If parallel to $4\mathbf{i} - 5\mathbf{j}$,

$$\frac{2\mu + 1}{\mu + 3} = \frac{4}{5}$$

(M1A1) ft (c)(i)

$$10\mu + 5 = 4\mu + 12$$

(m1)

$$6\mu = 7$$

$$\mu = \frac{7}{6}$$

(A1) cao

2300U10-1 WJEC GCE AS Mathematics - Unit 1 Pure Mathematics A MS S22/CB

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)
MATHEMATICS
UNIT 2 APPLIED MATHEMATICS A
2300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS MATHEMATICS

UNIT 2 APPLIED MATHEMATICS A

SUMMER 2022 MARK SCHEME

SECTION A – Statistics

Qu. No.	Solution	Mark	Notes
1(a)	$P(A \cap B) = 0.3 + 0.6 - 0.82$	M1	Use of addition formula
	$P(A \cap B) = 0.08$	A1	Sight of 0.08 in a Venn diagram earns M1A1.
	$P(A) \times P(B) = 0.3 \times 0.6 = 0.18$	B1	
	Since $0.18 \neq 0.08$, A and B are not independent.	E1	FT their $P(A)P(B)$ and $P(A \cap B)$ provided one is correct. No FT for negative probabilities.
	Alternative: If A and B are independent $P(A) \times P(B) = 0.3 \times 0.6 = 0.18$	(B1)	
	$P(A \cup B) = 0.3 + 0.6 - 0.18$	(M1)	
	$P(A \cup B) = 0.72$	(A1)	
	Since $0.72 \neq 0.82$, A and B are not independent.	(E1)	FT their $P(A)P(B)$ and $P(A \cup B)$ provided one is correct. No FT for negative probabilities.
(b)	P(Exactly one of A and B) = $P(A \cup B) - P(A \cap B)$	M1	Writing or using formula.
	= 0.82 - 0.08	M1	FT 'their 0.08' providing it is a valid probability ≠ 0.18
	= 0.74	A1	CAO
	Alternative 1: P(Exactly one of A and B) $= P(A \cap B') + P(B \cap A').$ OR Sight of 0.22 or 0.52	(M1)	FT 'their 0.08' provided it is a valid probability ≠ 0.18
	P(Exactly one of A and B) = $0.22 + 0.52$	(M1)	Both values correct
	P(Exactly one of A and B) = 0.74	(A1)	CAO
	Alternative 2: P(Exactly one of A and B) = $P(A) + P(B) - 2P(A \cap B)$	(M1)	
	$= 0.3 + 0.6 - 2 \times 0.08$	(M1)	FT 'their 0.08' providing it is a valid probability ≠ 0.18.
	= 0.74	(A1)	CAO
		Total: [7]	

2 (a)	$Height = 40 \times 0.45 \div 3$	M1	M1 for $40 \times 0.45 \div \text{(their width)}$
(b)	= 6 units Valid explanation.	A1 E1	E0 for an explanation that refers to the
(0)	e.g., We don't know how the probability is distributed within the two groups.	L 1	probability of individual integer values of X e.g., we don't know the probability that $X = 268$. E0 for "We don't know the probability" Condone "We don't know how it is distributed within the two groups."
(c)	Valid explanation. Must imply different samples are being considered. e.g., Different samples will lead to different results. e.g., The lifetimes of the light bulbs that Celyn collects will be different from those considered in (a). e.g., If the differences are big enough this would suggest that something might have gone wrong. This explanation is the exception to the requirement to refer to samples or collections of light bulbs.	E1	Allow explanations that compare a sample with the expected values, e.g. The histogram drawn from the table of probabilities only shows the expected values, whereas the histogram that Celyn draws represents a single sample (of 40 light bulbs). Condone histogram drawn using different intervals. E0 for every light bulb is different. E0 for anything that implies it's from a distribution other than the one in the question. e.g., It might be a different type of lightbulb.
		Total [4]	

3(a)	Earthworms need to occur at a uniform/constant average rate. AND one of independently / singly / randomly.	E1	Accept equivalent statement.
(b)	The number of earthworms X is $Po(2.75)$.	B1	si
	$P(X = 5) = \frac{2.75^5 \times e^{-2.75}}{5!}$	M1	FT their derived mean or 11 FYI $P(X = 5) = 0.0224$ for $\lambda = 11$ $P(X = 5)$ correct for any λ other than 2.75 earns M1A0
	P(X = 5) = 0.0837861	A1	CAO M1A1 for use of calculator 3sf (awrt 0.0838)
(c)	$P(X \le 12) = 0.3585$	M1	M1A0 for 13.98 or 13.99
	$\lambda = 14$	A1 Total [6]	If no marks awarded, SC1 for $\lambda=15$ Sight of $\lambda=14$ earns M1A1

4(a)(i)	$64 + (64 - 49.5) \times 1.5$ (= $64 + 14.5 \times 1.5 = 85.75$)	M1	Use of rule $Q_3 + 1.5$ IQR
	87.2 > 85.75 therefore, it's an outlier.	A1	Correct calculation and conclusion.
(ii)	Valid reason. e.g. May distort calculations and therefore inferences about population.	E1	Condone "so that the mean will not be affected by outliers." Allow "there may have been an error in measurement". Allow "may skew the data". E0 for "median does not change". E0 for "make calculations more reliable".
(iii)	Valid reason. e.g., It's only just an outlier. Still a valid measurement so should include it.	E1	Condone "to use all of the data".
(b)	The larger the hip girth, the larger the thigh girth, on average .	E1	oe Condone 'tends' or 'in general' in place of on average. Penalise first omission of on average only.
(c)	Each increase of 1 cm of hip girth corresponds to a 0.69 cm increase in thigh girth on average .	E1	Penalise first omission of on average only. Watch out for hip girth and thigh girth in the wrong order.
(d)	Using all of the data instead of a sample would lead to more accurate results.	E1	Condone increase sample size provided no nonsensical statements follow.
		Total [7]	Do not allow reference to other sampling methods.

			<u> </u>
5(a)	$H_0: p = 0.7$ $H_1: p < 0.7$	B1	Allow other letters if defined. Allow worded hypotheses or use of 70%. B0 for 0.7% B0 for omission of p or for a nonstrict inequality in H_1
(b)(i)	The critical region is the range of values of the number of people that know the name of the company that would lead us to reject H_0 .	E1	Condone "The critical region is the range of values of the test statistic that would lead us to reject H_0 ."
(ii)	Under <i>H</i> ₀ , <i>X</i> ~B(60,0.7) si	B1	Award if seen in part (iii)
	$P(X \le 35) = 0.0362$	M1	M0 for $P(X = k)$ FT their hypotheses
	CR <i>X</i> ≤ 35	A1	Do not accept as probability statement, i.e. $P(X \le 35)$. CAO
(iii)	40 is not in the critical region so there is insufficient evidence to reject H_0 .	M1	Allow use of p-value method in part (iii), $P(X \leq 40) = 0.3308 \text{ and correct}$ comparison with 0.05. M0 for conclusion based on $P(X = k)$ p-value not in critical region earns M0A0 FT their hypotheses
	There is insufficient evidence to say that fewer than 70% of participants know the name of the sponsoring company.	A1	Do not allow categorical statements without reference to insufficient evidence or suggests. FT their hypotheses
(c)	Valid comment with a reason e.g., It's worth sponsoring the event because the result of the hypothesis test suggests it is an effective way of getting brand recognition. e.g., It's unclear whether the brand recognition provides the necessary monetary compensation for the sponsorship money. e.g., The test implies that it's likely that a reasonable proportion of participants know the name of the sponsor so it may be worth doing. e.g., Run4Lyfe may be concerned about the proportion who know the name of the sponsor and so may wish to discontinue sponsorship. e.g., They may feel that the evidence is inconclusive and so my wish to continue for another year. e.g., Continue with their existing approaches as there is insufficient evidence to substantiate their concern.	E1	FT based on their (possible incorrect) test conclusion. Must mention sponsorship (or imply it). Do not allow e.g. "Need to advertise more" without valid justification that refers to the conclusion reached in (b).
		Total [8]	

6(a)	Two valid comments. e.g. 1914 is negatively skewed. 2014 is positively skewed. Fertility rates were larger in 1914 than 2014 on average.	E2	Condone 1914 is skewed to the left. 2014 is skewed to the right. Allow "people tended to have more children in 1914 than in 2014". E1 for each valid comment.
(b)	That fertility rates are increasing in (at least) one country i.e., women had more babies on average in 2014 than 1914 in that country.	E1	E0 for decreasing by -0.61.
(c)(i)	Attempt to find decrease for either.	M1	Do not allow values other than 2.5 and 6.5 without a valid justification.
	Approximately $2.5 - 1.98 = 0.52$	A1	Allow in percentage terms i.e., France fell by 20.8%
(ii)	Approximately $6.5 - 4.4 = 2.1$	A1	Allow in percentage terms, i.e., Ethiopia fell by 32.3%
(iii)	Valid reason must address the decrease. e.g., Countries with a higher fertility rate in 1914 have more of an opportunity for it to decrease. e.g., Ethiopia is a developing country and its fertility rate is likely to have decreased more rapidly in the last 100 years than France which is a developed country.	E1	Do not allow comparison of birth rates in both countries.
(iv)	Valid explanation. e.g., We have used the midpoint of the group to estimate. e.g., We have no way of knowing what the exact fertility rates of France and Ethiopia are in 1914. e.g., Exact fertility rates in 1914 are unknown.	E1	Allow responses that imply that the fertility rate may not have been measured accurately, e.g., data collection methods may differ between the countries or across the 100 years.
		Total [8]	

SECTION B - Mechanics

Q7	Solution	Mark	Notes
	Method 1 (Combining as one particle)		
	a = 0.85		
	<i>u</i> = 0 · 85		
	T T		
	320 650 F		
	Apply N2L to vehicle and trailer combined	M1	Dimensionally correct equation
	F - (650 + 320) = (1300 + 500)a	A1	F and 970 opposing
	$F - 970 = 1800(0 \cdot 85)$ $(F - 970 = 1530)$ F = 2500	A1	Convincing
	a = 0.85		
	©Thinkstock		
	320 T		
	Apply N2L to trailer	M1	Dimensionally correct equation
	T - 320 = 500a	A1	T and 320 opposing
	$T - 320 = 500(0 \cdot 85)$ $(T - 320 = 425)$ T = 745 (N)	A1	cao
	Alternative colution for finding T	[6]	
	Alternative solution for finding T		
	a = 0.85		
	650 F = 2500		
	Apply N2L to vehicle	(M1)	Dimensionally correct equation with all forces,
	2500 - 650 - T = 1300a	(A1)	T and 2500 opposing, ± 650
	$2500 - 650 - T = 13000$ $2500 - 650 - T = 1300(0 \cdot 85) (1850 - T = 1105)$ $T = 745 \text{ (N)}$	(A1)	cao
	, , ,	, ,	
	Total for Question 7	6	

Method 2 (Car and Trailer separate particles)		
a = 0.85 $320 650 F$		M1 available once for N2L with this method
Apply N2L to trailer $T - 320 = 500a$ $T - 320 = 500(0 \cdot 85)$ $T = 745 \text{ (N)}$ $(T - 320 = 425)$	M1 A1 A1	Dimensionally correct equation <i>T</i> and 320 opposing
Apply N2L to vehicle $F - 650 - T = 1300a$ $F - 650 - 745 = 1300(0 \cdot 85) \qquad (F - 1395 = 1105)$ $F = 2500$	(M1) A1 m1 A1	Dim. correct. All terms. F and T opposing, ± 650 For substituting their T Convincing
Alternative Solution using elimination of T Apply N2L to trailer $T - 320 = 500a$	[6] M1 A1	Dimensionally correct equation <i>T</i> and 320 opposing
Apply N2L to vehicle $F - 650 - T = 1300a$	(M1) A1	Dim. correct. All terms. F and T opposing, ± 650
Adding $F - 970 = 1800a$ $F - 970 = 1800(0 \cdot 85)$ $F = 2500$ $(F - 970 = 1530)$	m1 A1	Eliminating <i>T</i> Convincing
T = 745 (N) Total for Question 7	A1 [6]	cao

Q8	Solution	Mark	Notes
(a)	$v = u + at, \ u = 4, a = 1 \cdot 5, t = 8$ $v = 4 + (1 \cdot 5)(8)$ $v = 16 (ms^{-1})$	M1	Used
	$v = 16 \text{ (ms}^{-1})$	A1	cao
		[2]	
(b)	$v^2 = u^2 + 2as, \ v = 78, u = 4, a = 1.5$ $(78)^2 = (4)^2 + 2(1.5)s$ (6084 = 16 + 3s)	M1 A1	Used, FT their velocity from (a)
	minimum AB , $s = \frac{6068}{3} = 2022 \cdot 66 \dots $ (m)	A1 [3]	cso, allow answer rounding to 2020 (3sf)
	Total for Question 8	5	

Q9	Solution	Mark	Notes
(a)	150 A T P T T T A A A A A A A A A A A A A A		
	Apply N2L to both A and B $150 - T = 15a$ $10g$	M1 B1	Dimensionally correct equation for at least 1 object T and $10g/150$ opposing 1^{st} correct equation
	T - 10g = 10a	A1	2 nd correct equation
	Eliminating T 150 - 10g = 25a	m1	
	$a = 2 \cdot 08$ (ms ⁻²) $T = 118 \cdot 8$ (N)	A1 A1	cao FT their <i>a</i> if substituted into a correct equation
		[6]	correct equation
(b)	R C Ag		
	Apply N2L to C	M1	Dimensionally correct equation
	R - 4g = 4a $R = 4(2 \cdot 08) + 4(9 \cdot 8)$	A1	R and $4g$ opposing
	$R = 47 \cdot 52 \text{ (N)}$	A1 [3]	FT their a
	Total for Question 9	9	

Q10	Solution	Mark	Notes
(a)	Park		
	2 cos 60		
	Home $2 \sin 60$		
	$\mathbf{r}_{park} = (2\sin 60)\mathbf{i} + (2\cos 60)\mathbf{j}$	M1	Allow sin/cos error i, j not necessary with
	$\left(=2\left(\frac{\sqrt{3}}{2}\right)\mathbf{i}+2\left(\frac{1}{2}\right)\mathbf{j}\right)$		supporting diagram
	$=\sqrt{3}\mathbf{i}+\mathbf{j}$	A1 [2]	Convincing
(b)	Park		
	$\sqrt{3}i+j$		
	$\sqrt{3}\mathbf{i} + \frac{5}{2}\mathbf{j}$		
	$-\frac{2}{3}$ j		
	$SP = \sqrt{3}\mathbf{i} + \mathbf{j} - \left(-\frac{2}{3}\mathbf{j}\right)$		
	$=\sqrt{3}\mathbf{i}+\tfrac{5}{3}\mathbf{j}$	B1	si, or $SP = -PS$
	$ SP = \sqrt{\left(\sqrt{3}\right)^2 + \left(\frac{5}{3}\right)^2} \left(=\frac{2\sqrt{13}}{3} = 2 \cdot 4037 \dots\right)$	M1	i, j not necessary with supporting diagram
	distance travelled = $\frac{2\sqrt{13}}{3} + \frac{2}{3} = 3 \cdot 0703$ (km)	A1	cao
	Alternative Solution (Cosine Rule)	[3]	
	Alternative Solution (Cosine Rule) $SP^{2} = \left(\frac{2}{3}\right)^{2} + (2)^{2} - 2\left(\frac{2}{3}\right)(2)\cos 120^{\circ}$	M1	$SP^2 = \frac{52}{9}$
	$ SP = \frac{2\sqrt{13}}{3} = 2 \cdot 4037 \dots$	A1	
	distance travelled = $\frac{2\sqrt{13}}{3} + \frac{2}{3} = 3 \cdot 0703$ (km)	A1	cso, allow answer rounding to $3 \cdot 1$ (1 dp)
		[3]	(· · · · · · · · · · · · · · · ·
(c)	Any sensible assumption, for example Unlikely to walk in straight lines	E1	
	Actual route may not be a straight lineRoute may not be flat (be hilly)	[1]	
	Total for Question 10	6	

Q11	Solution	Mark	Notes
(a)	At rest, $v = 0$ $3t^2 - 24t + 36 = 0$	M1	Used
	3(t-2)(t-6) = 0 t = 2,6 (s)	A1	cao
		[2]	
(b)	Velocity decreasing $\frac{dv}{dt} = a = 6t - 24 (< 0),$	M1	Attempt to differentiate, at least one term correct, oe
	t < 4 For $0 < t < 2$,	A1	si
	Distance = $\int_0^2 (3t^2 - 24t + 36) dt$	M1	Not dependent on above M1 Use of integration, limits not needed, at least one term
	$= [t^3 - 12t^2 + 36t]_0^2$ = 32	A1 A1	correct Correct integration
	For $2 < t < 4$,		
	Distance = $-\int_{2}^{4} (3t^2 - 24t + 36) dt$		
	$= -[t^3 - 12t^2 + 36t]_2^4$ = -[-16] = 16	A1	Condone –16
	Required distance = 32 + 16 = 48	A1	cao
		[7]	
	Total for Question 11	9	

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
MATHEMATICS
UNIT 3 PURE MATHEMATICS B
1300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL MATHEMATICS

UNIT 3 PURE MATHEMATICS B

SUMMER 2022 MARK SCHEME

Q	Solution	Mark	Notes
1	$6(1 + \tan^2 x) - 8 = \tan x$	M1	use of $sec^2x = 1 + tan^2x$ Must be seen for M1
	$a\tan^2 x + b\tan x + c = 0$		
	$6\tan^2 x - \tan x - 2 = 0$		
	$(A\tan x + B)(C\tan x + D) = 0$	m1	$AC = a$ and $BD = c$, $c \neq 0$ oe
	$(3\tan x - 2)(2\tan x + 1) = 0$		
	$\tan x = -\frac{1}{2}, \frac{2}{3}$	A1	cao
	$\tan x = \frac{2}{3}, x = 33.69^{\circ}, 213.69^{\circ}$	B1	first 2 correct solutions Condone 0.588°, 3.730°
	$\tan x = -\frac{1}{2}, \ x = 153.43^{\circ},$	B1	3 rd correct solution Condone 2.678 ^c
	$x = 333.43^{\circ}$	B1	4th correct solution Condone 5.820 ^c

Notes: If one or two roots obtained for tan *x*, even if incorrectly obtained, full follow through from these values for B1 B1 B1, provided one +ve and one -ve root. If only one sign obtained, only B1 available for one pair of correct angles.

Do not follow through for sin, cos or anything else.

Ignore all roots outside range $0^{\circ} \le x \le 360^{\circ}$.

For 5th, 6th, 7th extra root within range, -1 mark each extra root.

If all answers in radians, but radians **not** specified, penalise -1.

Accept all answers correctly rounded to the nearest whole number or better.

Mark Notes

 $2(a) y = x^3 \ln(5x)$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 \ln(5x) + x^3 \frac{5}{5x}$$

$$M1 f(x)\ln(5x) + x^3g(x)$$

M0 if
$$f(x) = 0$$
 or 1 or $g(x) = 0$ or 1

A1
$$3x^2 \ln(5x)$$

A1
$$x^3 \frac{5}{5x}$$

ISW

$$\frac{dy}{dx} = 3x^2 \ln(5x) + x^2 = x^2 (3\ln(5x) + 1)$$

2(b) $y = (x + \cos 3x)^4$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(x + \cos 3x)^3 (1 - 3\sin 3x)$$

 $M1 \qquad 4(x + \cos 3x)^3 f(x)$

M0 if
$$f(x) = 1$$

$$A1 \qquad f(x) = (1 - 3\sin 3x)$$

Condone absence of brackets

for M1 A0, unless corrected for A1.

ISW

Mark Notes

3
$$OB\left(=\frac{4}{\cos\frac{\pi}{3}}\right) = 8 \text{ or } OA\left(=\frac{4}{\tan 30^{\circ}}\right) = 4\sqrt{3} \text{ B1} \quad \text{si } (OA = 6.928....)$$

$$=8\sqrt{3}=13.856...$$

Area
$$OBC = \frac{1}{2} \times 8 \times 8 \times \frac{\pi}{3}$$
 M1 Use of $A = \frac{1}{2}r^2\theta$

Or
$$A = \frac{1}{6}\pi r^2$$

$$=\frac{32\pi}{3}=33.510...$$
 ft *OB*, *OA*

Required area
$$OABC = 47.37 \text{ (m}^2\text{)}$$
 A1 cao Must be to 2dp

Mark Notes

 $4 \qquad \frac{a}{1-r} = 120$

$$\frac{a}{1 - 4r^2} = 112 \frac{1}{2}$$

$$120(1-r) = \frac{225}{2}(1-4r^2)$$

M1 or elimination of r

$$900r^2 - 240r + 15 = 0$$

or $a^2 - 208a + 10800 = 0$

m1 attempt to solve their quadratic equation
Implied by correct answers

$$60r^2 - 16r + 1 = 0$$

$$(6r-1)(10r-1) = 0$$

$$r = \frac{1}{6}, \ r = \frac{1}{10}$$

$$a = 100, a = 108$$

Mark Notes

5(a)
$$\left(\frac{6x+4}{(x-1)(x+1)(2x+3)}\right) = \frac{A}{(x-1)} + \frac{B}{(x+1)} + \frac{C}{(2x+3)}$$
 M1 correct form

Implied by equation below

$$6x + 4 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3)$$

$$+ C(x + 1)(x - 1)$$

M1 si correct equation

Put
$$x = -1, -2 = B(-2)(1)$$

$$B = 1$$

Put
$$x = -\frac{3}{2}$$
, $-9 + 4 = C(-\frac{1}{2})(-\frac{5}{2})$

$$C = -4$$

A1 two correct constants

Put
$$x = 1$$
, $10 = A(2)(5)$

$$A = 1$$

A1 third constant correct

$$f(x) = \frac{1}{(x-1)} + \frac{1}{(x+1)} - \frac{4}{(2x+3)}$$

5(b)
$$\int \frac{3x+2}{(x-1)(x+1)(2x+3)} dx$$

$$= \int \frac{1}{2} \left[\frac{1}{(x-1)} + \frac{1}{(x+1)} - \frac{4}{(2x+3)} \right] dx$$

$$= \frac{1}{2} [\ln|x - 1| + \ln|x + 1| - 2\ln|2x + 3| (+\ln C)]$$
 B3

B1 correct int of $\frac{1}{(x-1)}$

B1 correct int of $\frac{1}{(x+1)}$

B1 correct int of $\frac{K}{(2x+3)}$

Condone no modulus signs for B3

M1 attempt to tidy up into one ln term
M0 if extra terms seen

$$= \frac{1}{2} \left[\ln \left| \frac{C(x+1)(x-1)}{(2x+3)^2} \right| \right] \quad \text{or} \quad \left[\ln \left| \frac{\sqrt{C(x+1)(x-1)}}{(2x+3)} \right| \right] \quad \text{A1} \quad \text{cao accept } + C$$

A0 if no C. ISW

Mark Notes

6(a) $T_{12} = 10 + (12 - 1) \times 0.2$

M1 use of a + (n-1)d

Allow d = 20 for M1.

Implied by correct answer.

 $T_{12} = £12.20$

A1

6(b) $(954 =) \frac{n}{2} [2 \times 10 + (n-1) \times 0.2]$

M1 use of $\frac{n}{2}[2a + (n-1)d]$

Allow d = 20 for M1.

9540 = n[100 + n - 1]

 $n^2 + 99n - 9540 = 0$

m1 equating to 954 and writing as quadratic

Implied by n = 60

(n-60)(n+159)=0

n = 60

A1 cao Dependent on M1

A0 if n = -159 present in final

answer

60 (months)

$$7 x^2 = 8\sqrt{x} or y = \left(\frac{y^2}{64}\right)^2$$

$$x^4 = 64x$$
 or $y^4 = 4096y$

$$x(x^3 - 64) = 0$$
 or $y(y^3 - 4096) = 0$

$$x = (0,) 4$$
 or $y = (0,) 16$

Area =
$$\int_0^4 \left(8x^{\frac{1}{2}} - x^2 \right) dx$$

Area =
$$\left[\frac{16}{3}x^{\frac{3}{2}} - \frac{1}{3}x^{3}\right]_{0}^{4}$$

Area =
$$\frac{16}{3} \times 8 - \frac{1}{3} \times 64$$

Area =
$$\frac{64}{3}$$

Mark Notes

A1 oe e.g.
$$x^{\frac{3}{2}} = 8$$

M1 oe allow
$$x^2 - 8x^{\frac{1}{2}}$$
 limits not required

Must be seen

Must be seen

previously

Award M1 if not awarded

(M1)

(A1)

A0 if integral gives negative answer, unless corrected without any incorrect statements.

Alternative Solution for last 4 marks

$$A = \int_0^4 8x^{\frac{1}{2}} \, \mathrm{d}x$$

$$= \left[\frac{16}{3}x^{\frac{3}{2}}\right]_0^4$$

$$=\frac{16}{3}\times 8 \ (=\frac{128}{3})$$

$$B = \int_0^4 x^2 \, \mathrm{d}x$$

$$= \left[\frac{1}{3}x^3\right]_0^4$$

$$(=\frac{64}{3})$$

Required area =
$$A - B = \frac{64}{3}$$

Note: Answer only, M1 A0 A0 A0

Mark Notes

$$8 \qquad \frac{2-x}{\sqrt{1+3x}} = (2-x)(1+3x)^{-1/2}$$

$$(1+3x)^{-1/2} = (1+\left(-\frac{1}{2}\right)(3x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(3x)^2 + \dots)B1 \qquad 1+\left(-\frac{1}{2}\right)(3x)$$

B1
$$\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(3x)^2$$

$$\frac{2-x}{\sqrt{1+3x}} = (2-x)(1-\frac{3}{2}x+\frac{27}{8}x^2+\ldots)$$

$$=2-3x+\frac{27}{4}x^2-x+\frac{3}{2}x^2+\dots$$

$$=2-4x+\frac{33}{4}x^2+\dots$$

B3 B1 each term

Ignore further terms, ISW

Expansion valid for |3x| < 1

$$|x| < \frac{1}{3}$$
 or $-\frac{1}{3} < x < \frac{1}{3}$

B1 B1 for $x < \frac{1}{3}$ and $x > -\frac{1}{3}$

B0 anything else

When $x = \frac{1}{22}$,

$$\frac{2 - \frac{1}{22}}{\sqrt{1 + \frac{3}{22}}} \approx 2 - \frac{4}{22} + \frac{33}{4} \left(\frac{1}{22}\right)^2$$

M1 sub into LHS and RHS

$$\frac{\frac{43}{22}}{\frac{5\sqrt{22}}{22}} = \frac{43}{5\sqrt{22}} \approx \frac{323}{176} \quad \text{or} \quad \frac{43\sqrt{22}}{110} \approx \frac{323}{176}$$

$$\sqrt{22} \approx \frac{7568}{1615}$$
 or $\frac{1615}{344}$

A1 cao

(= 4.686068111..., or 4.694767442..., actual value is 4.69041576...)

Special case for $(1 + 3x)^{1/2}$ used

$$(1+3x)^{1/2} = (1+\left(\frac{1}{2}\right)(3x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2}(3x)^2 + \dots)$$
 (B0)

(B0)

$$\frac{2-x}{\sqrt{1+3x}} = (2-x)(1 + \frac{3}{2}x - \frac{9}{8}x^2 + \dots)$$
$$= 2 + 3x - \frac{9}{4}x^2 - x - \frac{3}{2}x^2 + \dots$$
$$= 2 + 2x - \frac{15}{4}x^2 + \dots$$

(B3) B1 each term

Ignore further terms, ISW

Expansion valid for |3x| < 1

$$|x| < \frac{1}{3}$$
 or $-\frac{1}{3} < x < \frac{1}{3}$

(B1) B1 for $x < \frac{1}{3}$ and $x > -\frac{1}{3}$ B0 anything else

Correct substitution

(M1)

(A0)

Mark Notes

 $9(a) u_1 = \sin\left(\frac{\pi}{2}\right) = 1$

$$u_2 = \sin\left(\frac{2\pi}{2}\right) = 0$$

$$u_3 = \sin\left(\frac{3\pi}{2}\right) = -1$$

$$u_4 = \sin\left(\frac{4\pi}{2}\right) = 0$$

$$u_5 = \sin\left(\frac{5\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

Sequence is periodic (with period 4)

B1 All 5 terms

B1

B1

B1 Condone 'Repeats every 4 terms' or 'Oscillates'

9(b) $u_5 = 17$

$$(u_5 = 17), u_4 = 9, u_3 = 5, u_2 = 3, u_1 = 2$$

Sequence is increasing.

B1 Accept 'Divergent'

Mark Notes

$$10 \qquad \frac{6x^5 - 17x^4 - 5x^3 + 6x^2}{(3x+2)} = \frac{(x^2)(6x^3 - 17x^2 - 5x + 6)}{(3x+2)}$$

$$=\frac{(x^2)(3x+2)(2x^2-7x+3)}{(3x+2)}$$

M1 or removing x^2 from pentic

M1 divide by
$$(3x + 2)$$
,
or realising $(3x + 2)$ is a factor of
the cubic **and** cancelling

A1 Sight of
$$(2x^2 - 7x + 3)$$

$$=x^{2}(2x-1)(x-3)=0$$

A1 Must be seen

$$x = 0$$
(twice), $\frac{1}{2}$, 3.

A1 cao A0 if $-\frac{2}{3}$ present

Note:
$$(6x^3 - 17x^2 - 5x + 6) = (x - 3)(6x^2 + x - 2)$$

$$(6x^3 - 17x^2 - 5x + 6) = (2x - 1)(3x^2 - 7x - 6)$$

Alternative Solution

$$10 \qquad \frac{6x^5 - 17x^4 - 5x^3 + 6x^2}{(3x+2)} = \frac{(x^2)(6x^3 - 17x^2 - 5x + 6)}{(3x+2)}$$

(M1) or removing x^2 from pentic

$$=\frac{(x^2)(3x+2)(2x^2-7x+3)}{(3x+2)}$$

(M1) any linear factor or divide by (3x + 2)

(A1) Sight of
$$(2x^2 - 7x + 3)$$
 oe
or second factor from factor
theorem

$$= x^2(2x - 1)(x - 3) = 0$$

(A1) (3x + 2) must be cancelled or solution discarded

$$x = 0$$
 (twice), $\frac{1}{2}$, 3.

(A1) cao A0 if $-\frac{2}{3}$ present

Note: $(6x^3 - 17x^2 - 5x + 6) = (x - 3)(6x^2 + x - 2)$

$$(6x^3 - 17x^2 - 5x + 6) = (2x - 1)(3x^2 - 7x - 6)$$

Mark Notes

11(a) $9\cos x + 40\sin x = R\cos x \cos \alpha + R\sin x \sin \alpha$

 $R\cos\alpha = 9$ and $R\sin\alpha = 40$

M1 implied by correct α if nothing seen.

M0 for incorrect equations

$$R = \sqrt{9^2 + 40^2} = 41$$

B1

$$\alpha = \tan^{-1}\left(\frac{40}{9}\right) = 77.32^{\circ}$$

A1 accept 1.349 rad, not 1.349 ft R if $\alpha = \sin^{-1}\left(\frac{40}{R}\right) = \cos^{-1}\left(\frac{9}{R}\right)$

 $9\cos x + 40\sin x = 41\cos(x - 77.32^\circ)$

11(b)
$$y = \frac{12}{9\cos x + 40\sin x + 47}$$

Maximum y when denominator is minimum,

i.e. when $\cos(x - 77.32^{\circ}) = -1$

M1 implied by correct max

Max
$$y \left(= \frac{12}{-41+47} \right) = 2$$

A1 ft R

Mark Notes

12(a)
$$ff(p) = f(0) = 10$$

B1

12(b)
$$2x^2 + 12x + 10 = 0$$

 $2(x^2 + 6x + 5) = 0$
 $2(x + 5)(x + 1) = 0$

M1may be implied by solution

$$p = -5, q = -1$$

A1 both

$$12(c) f(x) = 2[x^2 + 6x + 5]$$

$$= 2[(x + 3)^2 - 4]$$

$$= 2(x + 3)^2 - 8$$
Min point at (-3, -8)

M1condone absence of '2'

A1 cao

B1

12(d)
$$f(x)$$
 is not a one-to-one function (on its domain).

B1

12(e)(i) Let
$$y = 2(x+3)^2 - 8$$

$$(x+3)^2 = \frac{y+8}{2}$$

$$x = -3 \pm \sqrt{\frac{y+8}{2}}$$

M1 ft similar form from (c)

since $x \ge -3$, $x = -3 + \sqrt{\frac{y+8}{2}}$

Condone $x = -3 + \sqrt{\frac{y+8}{2}}$ **A**1

 $g^{-1}(x) = -3 + \sqrt{\frac{x+8}{2}}$

Must discard negative root **A**1

A1 interchange x and y, could be done earlier

B1 Correct shape

B1 (10, 0) (0, -1), cao

Mark Notes

13(a)
$$f'(x) = 6x^2 + 3$$

B1

Hence f'(x) > 0 for all x,

i.e. f(x) does not have a stationary point.

E1 oe

e.g. f'(x) = 0 has no real roots

discriminant = $0^2 - 4(6)(3) < 0$, no real roots

13(b)
$$f''(x) = 12x$$

M1

At point of inflection f''(x) = 0, x = 0

m1

f'(x) > 0 when x < 0 and when x > 0.

Therefore, when x = 0,

there is a point of inflection.

A1 oe cubic curve no max/min

must have a point of inflection.

OR
$$x > 0$$
, $f''(x) > 0$; $x < 0$, $f''(x) < 0$

The point of inflection is (0, -5)

B1

13(c)

G1 cubic curve no max/min

ft point in (b) coords not required.

(1,0) not required.

Q Solution

Mark Notes

14
$$I = [\pm \cos x \cdot x^2]_0^{\pi} - \int_0^{\pi} \pm \cos x \cdot 2x \, dx$$
 M1 attempt at parts, 2 terms, at least one term correct.

Limits not required

$$I = [-\cos x \cdot x^2]_0^{\pi} - \int_0^{\pi} -\cos x \cdot 2x \, dx$$
 A1

$$I = [-\cos x \cdot x^2]_0^{\pi} + [\sin x \cdot 2x]_0^{\pi}$$

$$-\int_0^{\pi} 2\sin x \, \mathrm{d}x$$

correct integration of

$$\int_0^{\pi} \pm \cos x \cdot 2x \, \mathrm{d}x$$

A1

$$I = [-\cos x \cdot x^{2}]_{0}^{\pi} + [2\sin x \cdot x]_{0}^{\pi} + [2\cos x]_{0}^{\pi} A1$$

correct integration of

$$\int_0^{\pi} \pm \sin x \, dx$$

$$I = [2x\sin x + (2 - x^2)\cos x]_0^{\pi}$$

$$I = \pi^2 + 0 + 2(-1 - 1)$$

m1 correct use of correct limits

Implied by correct answer

$$I = \pi^2 - 4 (= 5.87)$$
 A1 cao

Note

No marks for answer unsupported by workings.

If integration is incorrect and answer of 5.87 seen with **no working**, m0 A0. If substitution seen m1 is available.

Be careful of use of calculators to obtain correct answer after incorrect integration.

Condone missing dx.

M1A0 only for
$$I = \left[\sin x \cdot \frac{x^3}{3} \right]_0^{\pi} - \int_0^{\pi} \frac{x^3}{3} \cos x \, dx$$

Mark Notes

15(a)
$$y = \sqrt{16 - x^2}$$
 OR $A = 2xy$

$$A = 2x\sqrt{16 - x^2}$$

15(b)
$$\frac{dA}{dx} = \frac{d}{dx} [2x(16-x^2)^{1/2}]$$

M1
$$f(x) (16-x^2)^{1/2} + 2xg(x)$$

M0 if
$$f(x) = 0$$
 or 1 or $g(x) = 0$ or 1

Only ft if product with $Bx\sqrt{K-x^2}$

$$\frac{dA}{dx} = 2(16 - x^2)^{1/2} + 2x \times \frac{1}{2}(16 - x^2)^{-1/2}(-2x)$$

$$\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{4}{(16-x^2)^{1/2}}[8-x^2]$$

At max,
$$\frac{dA}{dx} = 0$$

$$x^2 = 8$$

 $x = 2\sqrt{2}$ (-ve value inadmissible)

$$y = \sqrt{16 - x^2} = \sqrt{16 - 8} = 2\sqrt{2}$$

A1 cao accept
$$y^2 = 8$$

therefore y = x.

Justification of maximum

B1
$$\frac{d^2A}{dx^2} = -22 \text{ when } x = 2\sqrt{2}$$

OR

$$A^2 = 4x^2(16 - x^2) = 64x^2 - 4x^4$$

$$\frac{dA^2}{dx} = 128x - 16x^3$$

At max,
$$\frac{dA^2}{dx} = 0$$

$$x^2 = 8$$
, $x = 2\sqrt{2}$ (-ve value inadmissible)

$$y = \sqrt{16 - x^2} = \sqrt{16 - 8} = 2\sqrt{2}$$

(A1) cao accept
$$y^2 = 8$$

therefore y = x.

(B1)
$$\frac{d^2A^2}{dx^2} = -256 \text{ when } x = 2\sqrt{2}$$

Mark Notes

16(a) Where C meets the y-axis,

$$3 - 4t + t^2 = 0$$

M1

$$(t-1)(t-3)=0$$

$$t = 1$$
, point is $(0, 9)$

A1 or t = 1, 3

$$t = 3$$
, point is $(0, 1)$

A1 all correct

16(b)
$$\frac{dy}{dt} = -2(4-t)$$

B1

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -4 + 2t$$

B1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2(4-t)}{-4+2t}$$

B1 ft their dy/dt and dx/dt

Note: May be seen in (a)

At stationary point,
$$\frac{-2(4-t)}{-4+2t} = 0$$

M1

$$t = 4$$

At stationary point, $y = (4 - 4)^2 = 0$.

Hence the x-axis is a tangent to the curve C. A1

Mark Notes

17(a) $\cos(\alpha - \beta) + \sin(\alpha + \beta)$

 $= \cos \alpha \cos \beta + \sin \alpha \sin \beta + \sin \alpha \cos \beta + \cos \alpha \sin \beta \quad B1$

expand $\cos(\alpha - \beta)$, $\sin(\alpha + \beta)$

 $=\cos\alpha(\cos\beta+\sin\beta)+\sin\alpha(\cos\beta+\sin\beta)$

 $=(\cos\alpha+\sin\alpha)(\cos\beta+\sin\beta)$

B1 convincing

OR

 $(\cos\alpha + \sin\alpha)(\cos\beta + \sin\beta)$

= $\cos \alpha \cos \beta + \cos \alpha \sin \beta + \sin \alpha \cos \beta + \sin \alpha \sin \beta$ (B1) remove brackets

 $=\cos\alpha\cos\beta + \sin\alpha\sin\beta + \sin\alpha\cos\beta + \cos\alpha\sin\beta$

 $=\cos(\alpha-\beta)+\sin(\alpha+\beta)$

(B1) convincing

OR

 $\cos(\alpha - \beta) + \sin(\alpha + \beta)$

= $\cos \alpha \cos \beta + \sin \alpha \sin \beta + \sin \alpha \cos \beta + \cos \alpha \sin \beta$ (B1) expand $\cos(\alpha - \beta)$, $\sin(\alpha + \beta)$

 $(\cos\alpha + \sin\alpha)(\cos\beta + \sin\beta)$

= $\cos \alpha \cos \beta + \cos \alpha \sin \beta + \sin \alpha \cos \beta + \sin \alpha \sin \beta$ (B1) remove brackets

Hence $\cos(\alpha - \beta) + \sin(\alpha + \beta)$

 $= (\cos\alpha + \sin\alpha)(\cos\beta + \sin\beta)$

Mark Notes

17(b)(i) Put $\alpha = 4\theta$, $\beta = \theta$

M1

 $\cos(4\theta - \theta) + \sin(4\theta + \theta)$

 $= (\cos 4\theta + \sin 4\theta)(\cos \theta + \sin \theta)$

 $\frac{\cos 3\theta + \sin 5\theta}{\cos 4\theta + \sin 4\theta} = \cos \theta + \sin \theta$

A1 convincing

17(b)(ii) When $\theta = \frac{3\pi}{16}$,

 $\cos 4\theta + \sin 4\theta = \cos \frac{3\pi}{4} + \sin \frac{3\pi}{4} = 0$

So $\frac{\cos 3\theta + \sin 5\theta}{\cos 4\theta + \sin 4\theta}$ is undefined.

B1 oe

OR

 $\cos 4\theta + \sin 4\theta \neq 0$

 $\tan 4\theta \neq -1$

 $4\theta\neq\frac{3\pi}{4}$

 $\theta \neq \frac{3\pi}{16}$

B1

Mark Notes

18(a) Put
$$u = x + 3$$

$$\int \frac{x^2}{(x+3)^4} \, \mathrm{d}x = \int \frac{(u-3)^2}{u^4} \, \mathrm{d}u$$

M1 Allow one slip

$$= \int \frac{u^2 - 6u + 9}{u^4} \, \mathrm{d}u$$

$$=\int (u^{-2}-6u^{-3}+9u^{-4})du$$

A1 integrable form

ft
$$(u + 3)$$
 only

$$=\frac{u^{-1}}{-1}-\frac{6u^{-2}}{-2}+\frac{9u^{-3}}{-3}(+\mathcal{C})$$

A1 correct integration

ft
$$(u + 3)$$
 only

$$= -\frac{1}{u} + \frac{3}{u^2} - \frac{3}{u^3} (+C)$$

$$= -\frac{1}{x+3} + \frac{3}{(x+3)^2} - \frac{3}{(x+3)^3} + C$$

A1 cao Correct expression in terms

of x

Must include + C

18(b)
$$\int_0^1 \frac{x^2}{(x+3)^4} dx = \left[-\frac{1}{x+3} + \frac{3}{(x+3)^2} - \frac{3}{(x+3)^3} \right]_0^1$$

$$= \left(-\frac{1}{4} + \frac{3}{16} - \frac{3}{64}\right) - \left(-\frac{1}{3} + \frac{1}{3} - \frac{1}{9}\right)$$

correct use of correct limits

ft for equivalent difficulty

for M1 only

$$=\frac{1}{576} (= 0.001736)$$

A1 cao

M1

No workings, 0 marks

OR

$$\int_0^1 \frac{x^2}{(x+3)^4} \, \mathrm{d}x = \left[-\frac{1}{u} + \frac{3}{u^2} - \frac{3}{u^3} \right]_3^4$$

$$= \left(-\frac{1}{4} + \frac{3}{16} - \frac{3}{64}\right) - \left(-\frac{1}{3} + \frac{1}{3} - \frac{1}{9}\right)$$

(M1) correct use of correct limits

ft for equivalent difficulty

for M1 only

$$=\frac{1}{576} (= 0.001736)$$

(A1) cao

No workings, 0 marks

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
MATHEMATICS
UNIT 4 APPLIED MATHEMATICS B
1300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL MATHEMATICS

UNIT 4 APPLIED MATHEMATICS B

SUMMER 2022 MARK SCHEME

SECTION A - Statistics

Qu. No.	Solution	Mark	Notes
1	Mark for selection to stage three $= 66 + k \times 14$	M1	k = 1.645 or better M1 implied by correct answer from calculator. Allow M1 for $\frac{x-66}{14}$ = 1.645.
	= 89.03	A1	A1 for sight of either value Condone sight of 89.
	Mark for non-selection $= 66 - k \times 14$	(M1)	M1 may be awarded here if not previously awarded. Allow M1 for $\frac{x-66}{14} = -1.645$.
	= 42.97	(A1)	A1 for sight of either value Condone sight of 43.
	Candidates can obtain scores between 43 and 89 in order to be selected for stage two of the interview process.	A1	Must be a range. Accept 42.97 to 89.03 Allow calculation of range between highest and lowest scores. Correct answer only scores M1A1A1 SC1 for 44 to 88 from use of 1.64.
	Total for Question 1	3	

Qu. No.	Solution	Mark	Notes
2(a)	$P(F1) = 0.4 \times 0.70 + 0.35 \times 0.30$	M1	Allow one slip.
	= 0.385	A1	
	Part (a) Total	[2]	
(b)	$P(C \mid F1) = \frac{P(C \cap F1)}{P(F1)}$ $= \frac{0.4 \times 0.7}{0.385}$	M1	FT their (a) provided it gives a valid probability as the final answer. If $P(F1) = 1$, must see division by 1.
	$=\frac{8}{11}$ or $0.\dot{7}\dot{2}$	A1	CAO (3sf required) Condone 0.73 from correct working
	Part (b) Total	[2]	
(c)	$P(F2') = 0.4 \times 0.8 + 0.35 \times 0.95 + 0.25 \times 0.15$	M1	si Allow one slip OR for $P(F2') = 1 - P(F2)$ with at most one slip in $P(F2)$ calculation
	$P(G \mid F2') = \frac{P(G \cap F2')}{P(F2')}$ $= \frac{0.35 \times 0.95}{0.4 \times 0.8 + 0.35 \times 0.95 + 0.25 \times 0.15}$	M1	Correct numerator (calculation or sight of 0.3325). May be seen as $0.35 \times 0.3 + 0.35 \times 0.65$. (Must be part of fraction)
		m1	Dependent on first M1. Correct denominator (calculation or sight of 0.69) (Must be part of a fraction)
	$=\frac{133}{276}$ or 0.481884	A1	CAO (3sf required) Condone 0.48 from correct working
	Part (c) Total	[4]	*
	Total for Question 2	8	

Qu. No.	Solution	Mark	Notes
3(a)	<i>X</i> ∼U(0,10)	M1	Seen, or implied by correct values or calculation of $E(X)$ and $Var(X)$
	E(X) = 5	A1	Must be from correct distribution
	$Var(X) = \frac{25}{3}$	A1	Must be from correct distribution Condone 8.33 (condone 8.3)
			If no marks awarded, SC1 for $E(X)$ and $Var(X)$ correct for their uniform distribution (stated or implied, e.g., implied by a diagram or for consistent use of a and b in the mean and variance formulae)
		F01	e.g., SC1 for $E(X) = 10$ and $Var(X) = \frac{100}{3}$.
	Part (a) Total	[3]	
(b)	$A = X(20 - X)$ $= 20X - X^2$	M1	Stating the area of the rectangle or consideration of relevant products.
	$P(20X - X^2 > 96) = P(X^2 - 20X + 96 < 0)$	M1	Forming a quadratic inequality or equation. Condone omission of $P()$ Stating $X > 8$ with no incorrect working scores M1M1.
	= P(8 < X < 12)	A1	Solving quadratic inequality or equation, may be implied by next A1 Condone $P(X > 8)$ if using correct distribution
	= P(8 < X < 10)	A1	si (may be implied by a diagram) FT if equivalent difficulty for restricting their range of values for <i>X</i>
	$=\frac{2}{10}$	A1	CSO (correct solution only)
	-		SC3 (M1M1A1A0A0) for 0.2 from $X \sim U(0,20)$ or with no working.
	Part (b) Total	[5]	A G (0,20) OF WILLT HO WORKING.
	Total for Question 3	8	

Qu. No.	Solution	Mark	Notes
4(a)	(Let the random variable W be the stopping distance		M1 implied by correct answer from calculator or
	in metres of a car travelling at 30mph.)		for correctly standardising $Z = \frac{30-23}{3.8} = 1.84$.
	$W \sim N(23, 3.8^2)$ P(W < 30) = 0.96727	M1A1	Gives 0.96712 from tables.
			3sf required (0.97 earns M1A0).
/h)	Part (a) Total	[2]	
(b)	(Let the random variable <i>X</i> be the stopping distance in metres of a car travelling at 20mph.)		
	X~N(12, 3.5 ²)		Either method correct (see note above).
	P(X > 20) = 0.011135	M1	M1 for 2.29 or -0.79 if standardised.
	P(W > 20) = 0.78508	A1	A1 for both probabilities, with at least one probability to 3sf.
	0.78508	M1	Alternatively, $\frac{0.78508}{50}$ or 0.011135×50 .
	0.011135		FT their probabilities. Condone division of
			P(X < 20) by $P(W < 20)$ that leads to 4.6.
	Appropriate conclusion with a valid justification, e.g.,	A1	Allow e.g., $0.0157016 \neq 0.011135$ or
	You're about 70 times more likely to collide travelling		$0.55675 \neq 0.78508$ so Dafydd is incorrect.
	at 30mph than 20mph, so Dafydd is incorrect.		FT their calculation for possible M1A1.
	Part (b) Total	[4]	All
(c)	(Let μ be the population mean stopping distances for		Allow worded by notheres
	cars travelling at 30mph) H_0 : $\mu = 23$ H_1 : $\mu < 23$	B1	Allow worded hypotheses. B0 for H_0 : mean = 23, must imply or refer to
	$11_0 \cdot \mu - 25$ $11_1 \cdot \mu < 25$	וט	population. B0 for omission of μ or use of \bar{x}
			B0 for a non-strict inequality in H_1 .
	$\bar{X} \sim N\left(23, \frac{3.8^2}{40}\right)$ under H_0	B1	Distribution of \bar{X} si (condone if used correctly).
	10 /		FT their hypotheses for 2 nd B1 only
	$P(\bar{X} < 21.5 H_0)$	M1	M1 for $P\left(Z < \frac{21.5 - 23}{\frac{3.8}{\sqrt{40}}}\right) = P(Z < -2.50), -2.50$
			scores M1 only if using the p-value method
	= 0.0062706	A1	0.00621 from tables, M0A0 for use of 21.5 and
	Cinco 0.00027 x 0.01 thousing outflicit and address to	1	23 the wrong way around.
	Since $0.00627 < 0.01$, there is sufficient evidence to reject H_0 .	m1	Dependent on previous M1. FT their p-value. m0 for incorrect comparison such as p-value is
			in the critical region.
	Alternative 1:		M1 implied by correct answer from calculator or
	CV = 21.602	(M1A1)	for correctly standardising $\frac{\text{CV}-23}{\frac{3.8}{2}} = -2.3263$
	Since 21.5 < 21.602, there is sufficient evidence to	(m1)	Dependent on previous M1. FT their CV. m0 for
	reject H_0 .	(,	incorrect comparison such as CV is less than
			significance level.
	Alternative 2:	(8.4.4)	
	$TS = \frac{21.5 - 23}{\frac{3.8}{50}}$	(M1)	
	= -2.50	(A1)	-2.50 scores M1A1 if used as a TS
	Since $-2.50 < -2.326$, there is sufficient evidence to	(M1)	Dependent on previous M1. FT their TS.
	reject H_0 .	(****)	m0 for incorrect comparison such as the TS is less than significance level. Condone accept H_1 .
	There is sufficient evidence to suggest that stopping	A1	CSO (correct solution only). Do not allow
	distances are less than previously thought.		categorical statements (condone categorical if
			"sufficient evidence" seen in m1 statement).
			Allow equivalent statements, e.g., there is
	Part (c) Total	[E]	sufficient evidence to support the claim.
(d)	Valid limitation, e.g. These are likely to be mostly	[6] E1	Must address (young people having) faster
(~)	young people which may mean they have a faster		reaction times.
	reaction time than average.		Condone reference to bias in the sample.
			Minimum response condoned "Only first year
			students used" or "Inexperienced drivers".
			Do not allow reference to sample size. Do not allow reference to driving slower.
	Part (d) Total	[1]	Bo not allow reference to unvillig slower.
	Total for Question 4	13	
	Total for Question 4	13	

Qu.	Solution	Mark	Notes
No.		wan	
5(a)	(Let ρ denote the population correlation coefficient between average house price and average score in the national reading test). $H_0: \rho = 0$ $H_1: \rho > 0$	B1	Allow other letters if defined. Allow worded hypotheses. B0 for H_0 : correlation = 0. Population must be stated or implied. B0 for omission of ρ or use of r B0 for a non-strict inequality in H_1
	TS = 0.86371	B1	Labelled as TS or used in comparison B0 for $TS = \pm 0.86371$ unless the positive value correctly used later.
	CV = 0.3687	B1	FT their hypotheses (e.g., 0.4329 for two-tailed)
	Since TS > 0.3687, there is sufficient evidence to reject H_0 .	B1	FT for using 0.746 FT their CV
	Sufficient evidence to suggest there is positive correlation between the average house price and average national reading test score.	E1	CSO (correct solution only). E0 for categorical statements or omission of the word positive (unless positive implied by contextualised comment). E0 for conclusion not in context
	Part (a) Total	[5]	
(b)	Valid comment saying the two variables are linked, i.e., giving a reason for the headline. e.g., The data support the idea that the more expensive houses are correlated with better reading scores.	E1	
	Valid comment saying why the headline is unreasonable. e.g., It's unreasonable to suggest that a more expensive house will improve a child's reading ability.	E1	E0 for correlation does not imply causation unless explained in context. Condone responses that give a valid alternative explanation for the correlation.
	Part (b) Total	[2]	
(c)	Possible explanation. e.g., parents who can afford better houses may have a better education so are more likely to help their children to read.	E1	E0 for comments such as "those with higher reading scores can afford better houses". Do not accept "small sample size" or "it is a coincidence". Condone a repetition of a valid alternative explanation that was given in (b). Do not condone a valid alternative explanation given in (b) only.
	Part (c) Total	[1]	
	Total for Question 5	8	

SECTION B - Mechanics

Q6 Solution	Mark	Notes
Tension, T_{AC} α $3 \cdot 6g$	M4	$\tan \alpha = \frac{3}{4}$ $\sin \alpha = \frac{3}{5} = 0.6$ $\cos \alpha = \frac{4}{5} = 0.8$ $3.6g = \frac{882}{25} = 35.28$ Attempt at resolution to get at
Resolving horizontally OR vertically $T_{AB} \sin \alpha = 3 \cdot 6g \qquad (T_{AB} \times 0 \cdot 6 = 3 \cdot 6g) \\ T_{AB} \cos \alpha = T_{AC} \qquad (T_{AB} \times 0 \cdot 8 = T_{AC})$	M1 A1 A1	least one dim. correct equation with no missing or extra forces First correct equation
$T_{AB}\cos\alpha = T_{AC}$ $(T_{AB} \times 0.8 = T_{AC})$ $T_{AB} = 58.8 \text{ (N)}$ $(T_{AB} = \frac{294}{5} = 6g)$	A1	Second correct equation cso, allow answer rounding to 58 · 8 (1dp)
$T_{AC} = 47 \cdot 04$ (N) $\left(T_{AC} = \frac{1176}{25} = 4 \cdot 8g\right)$	A1 [5]	FT their T_{AB} if substituted into a correct equation (if M awarded)
Alternative Solution (Triangle of forces) T_{AC} A $3 \cdot 6g$ T_{AB} T_{AC}		$\tan \alpha = \frac{3}{4}$ $\sin \alpha = \frac{3}{5} = 0 \cdot 6$ $\cos \alpha = \frac{4}{5} = 0 \cdot 8$ $3 \cdot 6g = \frac{882}{25} = 35 \cdot 28$
Evidence of one of the trig. ratios below (Resolving horizontally OR vertically)	M1	Attempt at resolution to get at least one dim. correct equation with no missing or extra forces
$\sin \alpha = \frac{3 \cdot 6g}{T_{AB}}$ $\cos \alpha = \frac{T_{AC}}{T_{AB}}$ $\tan \alpha = \frac{3 \cdot 6g}{T_{AC}}$	A1 A1	First correct equation Second correct equation
$T_{AB} = 58 \cdot 8 \text{ (N)}$ or $T_{AC} = 47 \cdot 04 \text{ (N)}$ $\left(T_{AB} = \frac{294}{5} = 6g\right)$ $\left(T_{AC} = \frac{1176}{25} = 4 \cdot 8g\right)$ $T_{AC} = 47 \cdot 04 \text{ (N)}$ or $T_{AB} = 58 \cdot 8 \text{ (N)}$	A1	cso, allow answer rounding to 58 · 8, allow answer rounding to 47 · 0
$T_{AC} = 47 \cdot 04 \text{ (N)}$ or $T_{AB} = 58 \cdot 8 \text{ (N)}$	A1 [5]	FT their T_{AB}/T_{AC} if substituted into a correct equation even if $\alpha = 37^{\circ}$
Total for Question 6	5	

Q7	Solution	Mark	Notes
(a)	$A \xrightarrow{X} 0.5 \xrightarrow{Y} 0.3 \xrightarrow{1\cdot 2} B$		
	Moments about X $0 \cdot 5R_Y = 0 \cdot 8 \times 5g + 2 \times 11g$ $0 \cdot 5R_Y = 4g + 22g$	B1 M1 A1	Any correct moment with pivot clearly indicated Dim. correct equation, oe, no extra/missing forces Correct equation $0 \cdot 5R_Y = 26g$
	$R_Y = 52g$	A1	cao
	Moments about Y	(M1)	Dim. correct equation, oe, no extra/no missing forces
	$0 \cdot 5R_X = 0 \cdot 3 \times 5g + 1 \cdot 5 \times 11g$	(A1)	Correct equation
	$0 \cdot 5R_X = 1 \cdot 5g + 16 \cdot 5g$		$0 \cdot 5R_X = 18g$
	$R_X = 36g$	(A1)	cao
	Resolve vertically	M1	Equation attempted, no extra/missing forces (or 2 nd moment equation)
	$R_Y = R_X + 5g + 11g$ $(R_Y = R_X + 16g)$	A1	oe
	$R_X = 36g$ OR $R_Y = 52g$	A1	FTR_X or R_Y
		[7]	
(b)	On the point of turning about Y , $R_X = 0$.	M1	si
	Moments about Y $Mg \times 0 \cdot 9 = 5g \times 0 \cdot 3 + 11g \times 1 \cdot 5$	m1	Equation, no additional forces
	$0 \cdot 9Mg = 1 \cdot 5g + 16 \cdot 5g$ $(0 \cdot 9Mg = 18g)$		
	M=20	A1	cao
		[3]	
	Total for Question 7	10	

Q8	Solution	Mark	Notes
(a)	$R = 90g \cos \alpha$ (= 90g cos 10° = 868 · 600)	B1	si
	$F = \frac{2}{9} \times R \qquad \left(F = \frac{2}{9} \times 90g \cos \alpha = 20g \cos \alpha\right)$	B1	si
	Apply N2L up slope	M1	Dim. correct, no missing/extra
	$380 - 90g \sin 10^{\circ} - F = 90a$	A1	forces,
	$380 - 153 \cdot 15769 \dots - 193 \cdot 02231 \dots = 90a$		$(F = 20g\cos 10^\circ = 193 \cdot 022 \dots)$
	a = 0.375(7776) (ms ⁻²)	A1	cso, allow answers rounding to 0 · 38
		[5]	10 0 30
(b)	If object remains stationary, component of		
	weight down slope \leq Limiting Friction $90g \sin \alpha \leq F$	M1	si
	$90g\sin\alpha \le 20g\cos\alpha$	A1	$882\sin\alpha \le 196\cos\alpha$
	$\alpha_{max} = \tan^{-1}\left(\frac{2}{9}\right)$		$\frac{2}{9} = \frac{196}{882}$
	$= 12 \cdot 5(288 \dots)^{0}$	A1	cao
		[3]	
	Total for Question 8	8	

Q9	Solution	Mark	Notes
(a)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta + 18)$	B1	oe
	dt	[1]	
(b)			
(D)	$\int \frac{1}{\theta + 18} \mathrm{d}\theta = -k \int \mathrm{d}t$	M1	Separating variables
	$\ln(\theta + 18) = -kt \ (+C)$	A1	Correct integration $\ln \theta + 18$ not needed as
	When $t = 0$, $\theta = 10$ $C = \ln(28)$ $(k = 3 \cdot 3322)$	m1	$\theta > -18$. FT Used
	$kt = \ln(28) - \ln(\theta + 18)$		Oseu
		A1	Convincing
	$kt = \ln\left(\frac{28}{\theta + 18}\right)$	[4]	Convincing
(c)	Using $t = 1$, $\theta = 6$, in given result		
	$k = \ln(\frac{28}{6+18})$ $(k = \ln(\frac{28}{24}) = \ln(\frac{7}{6}) = 0 \cdot 15415 \dots)$	M1	Conditions used
	At $\theta = -5$,		
	$kt = \ln\left(\frac{28}{-5 + 18}\right)$	m1	Their k sustituted
	t = 4.9773		$t = \frac{1}{\ln(\frac{7}{6})} \ln\left(\frac{28}{13}\right)$
	t = 5 hours	A1	cao
		[3]	
	Total for Question 9	8	

Q10	Solution	Mark	Notes
(a)	Horizontally		
	$t = \frac{x}{35\cos\theta}$	B1	oe, $x = (35\cos\theta)t$
	Vertically		
	$y = (35\sin\theta)t \pm \frac{1}{2}gt^2$	M1	$s = ut + \frac{1}{2}at^2, a = \pm g,$ $u = 35\sin\theta / 35\cos\theta$
	$y = (35\sin\theta)\left(\frac{x}{35\cos\theta}\right) + \frac{1}{2}(-9\cdot8)\left(\frac{x}{35\cos\theta}\right)^2$	A1	Correct equation
	$y = x \tan \theta - \frac{x^2}{250} \sec^2 \theta$		
	$y = x \tan \theta - \frac{x^2}{250} (1 + \tan^2 \theta)$	A1	Convincing with evidence, e.g
		[4]	$\frac{1}{\cos^2\theta} = 1 + \tan^2\theta$
(b)	(i) $20 = 100 \tan \theta - \frac{100^2}{250} (1 + \tan^2 \theta)$	M1	Correct use of $(100i + 20j)$ i.e. $x = 100, y = 20$
	$2\tan^2\theta - 5\tan\theta + 3 = 0$	m1	An attempt to collect terms, form and solve a quadratic
	$(2\tan\theta - 3)(\tan\theta - 1) = 0$		equation in $\tan \theta$.
	$\tan\theta = \frac{3}{2}, 1$	A1	Both values, isw
	(ii) $0 = x(a) - \frac{x^2}{250}(1 + a^2)$	M1	Using $a = \tan \theta = 1$ or $\frac{3}{2}$ and $y = 0$
	$x = 125$ (or $x = \frac{1500}{13} = 115 \cdot 38$)		FT their tan θ from (i)
	Shortest distance from F is $130 - 125 = 5$ (m)	A1	cao
		[5]	
	Total for Question 10	9	

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)
FURTHER MATHEMATICS
UNIT 1 FURTHER PURE MATHEMATICS A
2305U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 1 FURTHER PURE MATHEMATICS A

1. METHOD 1:	
a) i) $zw = (3 - 4i)(2 - i) = 6 - 3i - 8i + 4i^2$	
zw = 2 - 11i B2 B1 for unsimplification B2 B2 B3 for unsimplification B3 B2 B3 for unsimplification B3 B3 B4 F0	
with 3 correct te	
$ zw = \sqrt{2^2 + (-11)^2} = 5\sqrt{5}$ B1 FT their zw (zw i	must be seen)
$\arg zw = \tan^{-1}\left(-\frac{11}{2}\right) = -1.39 \text{ or } -79.7^{\circ}$ B1 oe FT their zw if	not in 1st
quadrant	1.00 11.1 250
METHOD 2:	
$ z = \sqrt{3^2 + (-4)^2} = 5$	
$ w = \sqrt{2^2 + (-1)^2} = \sqrt{5}$ (B1) Both mods	
$arg z = tan^{-1} \left(-\frac{4}{3} \right) = -0.927 \text{ or } -53.13^{\circ}$	
$arg w = tan^{-1} \left(-\frac{1}{2}\right) = -0.464 \text{ or } -26.57^{\circ}$ (B1) Both args	
Therefore,	c
$ ZW = 3 \wedge \sqrt{3} = 3\sqrt{3}$	
$arg zw = -0.927 + -0.464 = -1.39 \text{ or } -79.7^{\circ}$ (B1) 0e F1 args and m (mods and args r	
[4]	ilust be seem
ii) :: $5\sqrt{5}(\cos(-1.39) + i\sin(-1.39))$ B1 oe FT their mod	and arg
	and ang
OR $5\sqrt{5}(\cos(-79.7^{\circ}) + i\sin(-79.7^{\circ}))$ [1]	
b) METHOD 1:	
$\frac{1}{v} = \frac{1}{2-i} - \frac{1}{3-4i}$	
$\frac{1}{v} = \frac{3-4i-2+i}{(3-4i)(2-i)}$ M1 Attempt to comb	nine
v = (3-4i)(2-i)	Sinc
4 4 2:	
$\frac{1}{v} = \frac{1-3i}{2-11i}$ A1	
v = 2-111	
2 – 11i	
$v = \frac{2 - 11i}{1 - 3i}$ A1	
2-11i $1+3i$	
$v = \frac{2 - 11i}{1 - 3i} \times \frac{1 + 3i}{1 + 3i}$ M1 FT their v	
M0 for no working	ng
$v = \frac{35 - 5i}{10} \left(= \frac{7 - i}{2} \right)$	
v = 3.5 - 0.5i A1 oe cao	
METHOD 2:	
$\frac{1}{v} = \frac{1}{2-i} - \frac{1}{3-4i}$	

		ı	
	$\frac{1}{v} = \frac{z - w}{zw}$	(M1)	Attempt to combine
	$v = \frac{zw}{z-w} \text{ or } \frac{1}{v} = \frac{1-3i}{2-11i}$	(A1)	
	$v = \frac{2-11i}{1-3i}$	(A1)	
	$v = \frac{2 - 11i}{1 - 3i} \times \frac{1 + 3i}{1 + 3i}$	(M1)	FT their v M0 no working
	$v = \frac{35 - 5i}{10} \left(= \frac{7 - i}{2} \right)$	(A1)	oe cao
	v = 3.5 - 0.5i	(* .= /	oe cao
	METHOD 3: Attempt to realise at least one fraction e.g. $\frac{1}{2-i} \times \frac{2+i}{2+i}$ OR $\frac{1}{3-4i} \times \frac{3+4i}{3+4i}$	(M1)	M0 no working
	$\frac{1}{v} = \frac{2+i}{5} - \frac{3+4i}{25}$		
	$\frac{1}{v} = \frac{7+i}{25}$	(A1)	
	$v = \frac{25}{7+i}$	(A1)	
	$v = \frac{25}{7+i} \times \frac{7-i}{7-i}$	(M1)	FT their \emph{v} M0 no working
	$v = \frac{35 - 5i}{10} \left(= \frac{7 - i}{2} \right)$		
	v = 3.5 - 0.5i	(A1) [5]	oe cao
c)	$\bar{v} = \frac{7 + i}{2}$	B1	FT their v provided complex
	$v\bar{v} = \frac{7-i}{2} \times \frac{7+i}{2} = \frac{25}{2}$	B1 [2]	oe
		[12]	

		ı	
2.a)	METHOD 1:		
	Let $X = \begin{pmatrix} a \\ b \end{pmatrix}$		
	$\begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -11 \\ 7 \end{pmatrix}$		
	. 1 2 , ,		
	Therefore, $3a + 4b = -11$	N 4 4	Attornation forms 2 size and
	-a - 2b = 7	M1 A1	Attempt to form 2 sim eqns
	u 20 = 7	AI	
	Solving,		
	a = 3 and $b = -5$	M1	Attempt to solve
	$X = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$	A1	Must be in matrix form
	(-5)		
	METHOD 2:		
	$\det A = (3 \times -2) - (4 \times -1) = -2$		
		(B1)	si
	$A^{-1} = \frac{1}{-2} \begin{pmatrix} -2 & -4 \\ 1 & 3 \end{pmatrix}$	(B1)	
	Therefore,		
	$X = A^{-1}B = \frac{1}{-2} \begin{pmatrix} -2 & -4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 7 \end{pmatrix}$	(M1)	
	2 (1 3) ()		
	$X = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$	(A1)	Must be in matrix form
	(-3)	[4]	
b)	If reflection in $y = -2x$,	[4]	
(i)	then $\tan \theta = -2$	B1	si
(-)	$\theta = \tan^{-1}(-2)$		
	/ 3 4		
	Reflection matrix: $\begin{pmatrix} -\frac{1}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix}$	B2	B1 for 1 error (possibly
	Reflection matrix: $\begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix}$		repeated)
	(3 5 /	[3]	If B2 then -1 for PA
b)	METHOD 1:		
(ii)	Therefore,		FT their T
	$\left(-\frac{3}{7}, -\frac{4}{7}\right)$		
	$EF = \begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 7 & 1 \end{pmatrix}$	M1	For attempt to multiply at
	$\left(-\frac{4}{5}, \frac{3}{5}\right)^{1/2}$		least 1 point matrix
	(5 5 /		
	/ 34 13\		
	$EF = \begin{pmatrix} -\frac{34}{5} & -\frac{13}{5} \\ \frac{13}{5} & -\frac{9}{5} \end{pmatrix}$	A1	Left column
	$EF = \begin{pmatrix} 13 & 9 \end{pmatrix}$	A1	Right column
	$\left(\frac{1}{5} - \frac{1}{5}\right)$		May be seen as separate
	Midnaint		matrices
	Midpoint: (47 2)		
	$\left(-\frac{47}{10},\frac{2}{5}\right)$	B1	oe, FT their <i>E</i> and <i>F</i>
	\ 10 J/		
	METHOD 2:		FT their <i>T</i>
	Midpoint of <i>CD</i> = $\left(\frac{2+3}{2}, \frac{7+1}{2}\right) = \left(\frac{5}{2}, 4\right)$	(B1)	ri tileli <i>i</i>
	. (2 ′ 2 / (2 ′ - /	(01)	
	Therefore,		

			<u> </u>
	$\begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} \frac{5}{2} \\ \frac{4}{4} \end{pmatrix}$ $= \begin{pmatrix} -\frac{47}{10} \\ \frac{2}{5} \end{pmatrix}$	(M1)	FT their midpoint
	$\begin{pmatrix} 5 & 5 \\ -\frac{47}{10} \end{pmatrix}$	(A1)	
	$=\begin{pmatrix} 10\\ \frac{2}{5} \end{pmatrix}$		
	\ 5 /		
	Midpoint of EF:	(A1)	oe
	$\left(-\frac{47}{10},\frac{2}{5}\right)$	[4]	
		[11]	
3.	$x = -1 + 4\lambda y = 2 - 2\lambda z = -6 + 7\lambda$	B1	Si
	Substituting,	M1	
	$ \therefore -3 + 12\lambda + 16 - 16\lambda + 54 - 63\lambda = 0 $ $ 67 - 67\lambda = 0 $	A1	
	$\lambda = 1$	A1	
	$\therefore x = 3 y = 0 z = 1$		
	\Rightarrow (3, 0, 1)	B1	FT their λ and their x, y, z
		[5]	provided at least 2 correct
4.	$1^{2} + 2^{2} + 3^{2} + \dots + N^{2}$ can be written as $\sum_{r=1}^{N} r^{2}$		
	$\sum_{r=1}^{N} r^2 = (3N - 2)^2$		
	$\frac{1}{2}N(N+1)(2N+1) = 9N^2 - 12N + 4$	M1	
	$\frac{1}{6}N(N+1)(2N+1) = 9N^2 - 12N + 4$ $2N^3 + 3N^2 + N = 54N^2 - 72N + 24$	A1	
	$2N^3 - 51N^2 + 73N - 24 = 0$		
		A1	cao
	Finding one factor, eg. $(N-1)$		
	$\therefore (N-1)(2N^2-49N+24)=0$	B1	(N-k) form
		m1	Linear × Quadratic (2 terms correct)
	$\therefore N = 1 \text{ or } N = \frac{1}{2} \text{ or } N = 24$	A1	
	Ĩ		
	Therefore, $N = 1,24$	A1 [7]	Must reject $N = \frac{1}{2}$

5. $ z-3+2i = z-3 \\ x+iy-3+2i = x+iy-3 \\ (x-3)+i(y+2) = (x-3)+iy \\ \sqrt{(x-3)^2+(y+2)^2} = \sqrt{(x-3)^2+y^2} \\ x^2-6x+9+y^2+4y+4=x^2-6x+9+y^2 \\ 4y+4=0 \\ y=-1 $		T .		T
$\sqrt{(x-3)^2 + (y+2)^2} = \sqrt{(x-3)^2 + y^2}$ $x^2 - 6x + 9 + y^2 + 4y + 4 = x^2 - 6x + 9 + y^2$ $4y + 4 = 0$ $y = -1$ b) It is the perpendicular bisector of the line joining the points $(3, -2)$ and $(3, 0)$ OR The locus of P is all the points which are equidistant from $(3, -2)$ and $(3, 0)$. 6. $\alpha + \beta + \gamma = -\frac{p}{2}$ $\alpha\beta + \beta\gamma + \gamma\alpha = -63$ $\alpha\beta\gamma = -\frac{q}{2}$ Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $(7\alpha = -\frac{p}{2})$ $-21\alpha^2 = -63$ $(-27\alpha^3 = -\frac{q}{2})$ $\therefore \alpha^2 = 3 \Rightarrow \alpha = \pm \sqrt{3}$ If $\alpha = +\sqrt{3}$, $p = -14\sqrt{3}$ and $q = 162\sqrt{3}$ AND If $\alpha = -\sqrt{3}$, $p = 14\sqrt{3}$ and $q = -162\sqrt{3}$ A1	5. a)		M1	
$\begin{array}{c} 4y+4=0\\ y=-1 \end{array} \hspace{0.5cm} \begin{array}{c} \text{A1}\\ y=-1 \end{array} \hspace{0.5cm} \begin{array}{c} \text{Mark final answer}\\ \text{Sight of answer only M1m1A1} \end{array} \end{array}$		$\sqrt{(x-3)^2 + (y+2)^2} = \sqrt{(x-3)^2 + y^2}$	m1	oe
b) It is the perpendicular bisector of the line joining the points $(3, -2)$ and $(3, 0)$ OR The locus of P is all the points which are equidistant from $(3, -2)$ and $(3, 0)$. [1] 6. $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \beta + \gamma = -\frac{p}{2}$ B5 $\alpha + \beta + \gamma = -\frac{p}{2}$ B6 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ A2 $\alpha + \beta + \gamma = -\frac{p}{2}$ A3 $\alpha + \beta + \gamma = -\frac{p}{2}$ A4 $\alpha = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ A2 $\alpha + \beta + \gamma = -\frac{p}{2}$ A3 $\alpha = -\frac{p}{2}$ A4 $\alpha = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4 $\alpha + \beta + \gamma = -\frac{p}{2}$ B1 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B2 $\alpha + \beta + \gamma = -\frac{p}{2}$ B3 $\alpha + \beta + \gamma = -\frac{p}{2}$ B4		4y + 4 = 0	A1	
b) It is the perpendicular bisector of the line joining the points (3, -2) and (3, 0) OR The locus of P is all the points which are equidistant from (3, -2) and (3,0). [1] [4] [4] [6. $\alpha + \beta + \gamma = -\frac{p}{2}$ $\alpha\beta + \beta\gamma + \gamma\alpha = -63$ $\alpha\beta\gamma = -\frac{q}{2}$ B1 May be seen later in working B1 B1 B1 B1 Accept solutions where α, β, γ interchanged on (e.g. $-3\alpha, 9\alpha, -27\alpha$) Then other roots are -3α and 9α A1 A1 provided M1 awarded $(-27\alpha^3 = -\frac{q}{2})$ $\alpha^2 = 3$ $\alpha = \pm\sqrt{3}$ A1 cao If $\alpha = +\sqrt{3}$, $\beta = -14\sqrt{3}$ and $\beta = 162\sqrt{3}$ AND If $\alpha = -\sqrt{3}$, $\beta = 14\sqrt{3}$ and $\beta = -162\sqrt{3}$ A1			[3]	
from (3, -2) and (3,0). [1] [4] 6. $\alpha+\beta+\gamma=-\frac{p}{2}$ $\alpha\beta+\beta\gamma+\gamma\alpha=-63$ $\alpha\beta\gamma=-\frac{q}{2}$ Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $ \left(7\alpha=-\frac{p}{2}\right) \\ -21\alpha^2=-63 \\ \left(-27\alpha^3=-\frac{q}{2}\right)$ $ \therefore \alpha^2=3 \Rightarrow \alpha=\pm\sqrt{3}$ If $\alpha=+\sqrt{3}, \ p=-14\sqrt{3}$ and $q=162\sqrt{3}$ AND If $\alpha=-\sqrt{3}, \ p=14\sqrt{3}$ and $q=-162\sqrt{3}$ A1 [1] [4] May be seen later in working B1 B1 Accept solutions where α,β,γ interchanged oe (e.g. $-3\alpha,9\alpha,-27\alpha$) A1 provided M1 awarded	b)	points (3, -2) and (3, 0)		
6. $\alpha+\beta+\gamma=-\frac{p}{2}$ $\alpha\beta+\beta\gamma+\gamma\alpha=-63$ $\alpha\beta\gamma=-\frac{q}{2}$ Let initial root be α AND use of g.p. property Then other roots are -3α and 9α A1 Accept solutions where α,β,γ interchanged oe (e.g. $-3\alpha,9\alpha,-27\alpha$) Therefore $\left(7\alpha=-\frac{p}{2}\right)$ $-21\alpha^2=-63$ $\left(-27\alpha^3=-\frac{q}{2}\right)$ $\therefore \alpha^2=3 \Rightarrow \alpha=\pm\sqrt{3}$ A1 provided M1 awarded $(-27\alpha^3-1)$ A1 cao If $\alpha=+\sqrt{3}$, $\beta=-14\sqrt{3}$ and $\beta=-162\sqrt{3}$ AND If $\beta=-\sqrt{3}$, $\beta=-14\sqrt{3}$ and $\beta=-162\sqrt{3}$ A1			(B1)	
6. $\alpha+\beta+\gamma=-\frac{p}{2}$ $\alpha\beta+\beta\gamma+\gamma\alpha=-63$ $\alpha\beta\gamma=-\frac{q}{2}$ B1 May be seen later in working B1			[1]	
$\alpha\beta + \beta\gamma + \gamma\alpha = -63$ $\alpha\beta\gamma = -\frac{q}{2}$ Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $\left(7\alpha = -\frac{p}{2}\right)$ $-21\alpha^2 = -63$ $\left(-27\alpha^3 = -\frac{q}{2}\right)$ $\therefore \alpha^2 = 3 \Rightarrow \alpha = \pm\sqrt{3}$ If $\alpha = +\sqrt{3}$, $p = -14\sqrt{3}$ and $q = 162\sqrt{3}$ AND If $\alpha = -\sqrt{3}$, $p = 14\sqrt{3}$ and $q = -162\sqrt{3}$ A1 B1 B1 B1 Accept solutions where α, β, γ interchanged on equations are α, β, γ interchanged on equations and α, β, γ interchanged on equations are $\alpha, \beta, $			[4]	
$\alpha\beta + \beta\gamma + \gamma\alpha = -63$ $\alpha\beta\gamma = -\frac{q}{2}$ Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $\left(7\alpha = -\frac{p}{2}\right)$ $-21\alpha^2 = -63$ $\left(-27\alpha^3 = -\frac{q}{2}\right)$ $\therefore \alpha^2 = 3 \Rightarrow \alpha = \pm\sqrt{3}$ If $\alpha = +\sqrt{3}$, $p = -14\sqrt{3}$ and $q = 162\sqrt{3}$ AND If $\alpha = -\sqrt{3}$, $p = 14\sqrt{3}$ and $q = -162\sqrt{3}$ A1 B1 B1 B1 Accept solutions where α, β, γ interchanged on equations are α, β, γ interchanged on equations and α, β, γ interchanged on equations are $\alpha, \beta, $	6.	$\alpha + \beta + \gamma = -\frac{p}{a}$	B1	May be seen later in working
Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $ \left(7\alpha = -\frac{p}{2}\right) \\ -21\alpha^2 = -63 \\ \left(-27\alpha^3 = -\frac{q}{2}\right) $ $ \therefore \ \alpha^2 = 3 \Rightarrow \alpha = \pm\sqrt{3} $ If $\alpha = +\sqrt{3}$, $p = -14\sqrt{3}$ and $q = 162\sqrt{3}$ AND $ \text{If } \alpha = -\sqrt{3}$, $p = 14\sqrt{3}$ and $q = -162\sqrt{3}$ A1 Accept solutions where α, β, γ interchanged on eight interchanged on e		2	B1	
Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $ \left(7\alpha = -\frac{p}{2}\right) \\ -21\alpha^2 = -63 \\ \left(-27\alpha^3 = -\frac{q}{2}\right) $ $ \therefore \ \alpha^2 = 3 \Rightarrow \alpha = \pm\sqrt{3} $ If $\alpha = +\sqrt{3}, \ p = -14\sqrt{3}$ and $q = 162\sqrt{3}$ AND $ \text{If } \alpha = -\sqrt{3}, \ p = 14\sqrt{3} \text{ and } q = -162\sqrt{3} $ A1 A1 A2ccept solutions where α, β, γ interchanged on equations where α, β, γ interchanged on equations are α, β, γ interchanged on equations where α, β, γ interchanged on equations are α, β, γ interchanged on equations where α, β, γ interchanged on equations w			B1	
Then other roots are -3α and 9α Therefore $\left(7\alpha=-\frac{p}{2}\right)$ $-21\alpha^2=-63$ $\left(-27\alpha^3=-\frac{q}{2}\right)$ $\therefore \ \alpha^2=3 \ \Rightarrow \ \alpha=\pm\sqrt{3}$ Al provided M1 awarded A1 cao If $\alpha=+\sqrt{3}, \ p=-14\sqrt{3}$ and $q=162\sqrt{3}$ AND If $\alpha=-\sqrt{3}, \ p=14\sqrt{3}$ and $q=-162\sqrt{3}$ A1		$\mu \rho \gamma = -\frac{1}{2}$		
Then other roots are -3α and 9α Therefore $\left(7\alpha=-\frac{p}{2}\right)$ $-21\alpha^2=-63$ $\left(-27\alpha^3=-\frac{q}{2}\right)$ $\therefore \ \alpha^2=3 \Rightarrow \alpha=\pm\sqrt{3}$ A1 oe (e.g. $-3\alpha, 9\alpha, -27\alpha$) A1 provided M1 awarded A1 cao If $\alpha=+\sqrt{3}, \ p=-14\sqrt{3}$ and $q=162\sqrt{3}$ AND If $\alpha=-\sqrt{3}, \ p=14\sqrt{3}$ and $q=-162\sqrt{3}$ A1		Let initial root be $lpha$ AND use of g.p. property	M1	1
$\begin{pmatrix} 7\alpha = -\frac{p}{2} \\ -21\alpha^2 = -63 \\ \left(-27\alpha^3 = -\frac{q}{2}\right) \end{pmatrix}$ A1 provided M1 awarded $ \therefore \ \alpha^2 = 3 \Rightarrow \alpha = \pm \sqrt{3} $ A1 cao $ \text{If } \alpha = +\sqrt{3}, \ p = -14\sqrt{3} \ \text{and} \ q = 162\sqrt{3} $ AND $ \text{If } \alpha = -\sqrt{3}, \ p = 14\sqrt{3} \ \text{and} \ q = -162\sqrt{3} $ A1		Then other roots are -3α and 9α	A1	9
If $\alpha=+\sqrt{3},\ p=-14\sqrt{3}$ and $q=162\sqrt{3}$ AND If $\alpha=-\sqrt{3},\ p=14\sqrt{3}$ and $q=-162\sqrt{3}$		$ \begin{pmatrix} 7\alpha = -\frac{p}{2} \\ -21\alpha^2 = -63 \end{pmatrix} $	A1	provided M1 awarded
AND If $\alpha=-\sqrt{3},\ p=14\sqrt{3}$ and $q=-162\sqrt{3}$		$\therefore \alpha^2 = 3 \Rightarrow \alpha = \pm \sqrt{3}$	A1	cao
		AND		

			,
7.	From lines L_1 , L_2 :		
a)	$(2 \times 3) + (1 \times n) + (1 \times -3) = 0$	M1	
۵,	6 + n - 3 = 0		
	n = -3	A1	convincing
	From lines L_1 , L_3 :		
	$(2 \times p) + (-3 \times 3) + (1 \times 4) = 0$	(M1)	If not awarded for L_1 , L_2
	5	(1711)	ii flot awarded for L ₁ , L ₂
	$p = \frac{5}{2}$	A1	
	' 2	[3]	
		[၁]	
b)	$(3 \times \frac{5}{2}) + (1 \times 3) + (-3 \times 4) = -\frac{3}{2}$		
	$\binom{3}{2}$ $\binom{1}{3}$ $\binom{3}{1}$ $\binom{1}{3}$ $\binom{3}{1}$ $\binom{1}{3}$ $\binom{3}{1}$ $\binom{3}{1}$ $\binom{3}{1}$ $\binom{3}{1}$	B1	si FT their p for B1B1M1
	$ 3\mathbf{i} + \mathbf{j} - 3\mathbf{k} = \sqrt{19}$		
	$\left \frac{5}{2}\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}\right = \sqrt{\frac{125}{4}}$	B1	si Both mods
	$\left \frac{1}{2}i + 3j + 4k \right = \frac{1}{4}$	DI	SI BOLII IIIOUS
	12 1 $\sqrt{4}$		
	Therefore,		
	$-\frac{3}{2}$	M1	
	$\cos \theta = \frac{2}{105}$	IVII	oe
	$\cos\theta = \frac{-\frac{3}{2}}{\sqrt{19}\sqrt{\frac{125}{4}}}$		
	V 1 3 \ 4		
	$\theta = 93.5^{\circ}$		
	σ = 75.5		
		A1	620
	Therefore, acute angle is $\theta=86.5^o$		cao
		[4]	
		[7]	
		[, [,]	

8.	Rotation matrix: $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$	B1	
	$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$	M1	Attempt to multiply Allow 1 error (possibly repeated)
	$= \begin{pmatrix} \frac{1}{2}x - \frac{\sqrt{3}}{2}y\\ \frac{\sqrt{3}}{2}x + \frac{1}{2}y\\ z \end{pmatrix}$	A1	
	Therefore, $x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y$ $y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y$		
		M1	FT their images matrix
	$y = \frac{x(1-\sqrt{3})}{1+\sqrt{3}}$	A1	cao
	$\frac{1-\sqrt{3}}{1+\sqrt{3}} = \frac{(1-\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$ $= \frac{1+3-\sqrt{3}-\sqrt{3}}{1-3+\sqrt{3}-\sqrt{3}} = \frac{4-2\sqrt{3}}{-2}$	M1	M0 no working FT their y of equivalent difficulty e.g. $y = \frac{x(a+\sqrt{b})}{c+\sqrt{d}}$
	$y = \left(-2 + \sqrt{3}\right)x$	A1 [7]	

	1 2 1		I
9. a)	$\frac{1}{r+1} - \frac{2}{r+2} + \frac{1}{r+3}$		
	r+1 $r+2$ $r+3$		
	(r+2)(r+3) - 2(r+1)(r+3) + (r+1)(r+2)	M1	
	$\frac{(r+2)(r+3) - 2(r+1)(r+3) + (r+1)(r+2)}{(r+1)(r+2)(r+3)}$	IVII	
	$\frac{r^2 + 5r + 6 - 2r^2 - 8r - 6 + r^2 + 3r + 2}{2r^2 + 3r + 6 + r^2 + 3r + 2}$		
	(r+1)(r+2)(r+3)		
	2		
	$=\frac{2}{(r+1)(r+2)(r+3)}.$	A1	Convincing
		[2]	
b)	$\left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{2}{5} + \frac{1}{6}\right) + \cdots + \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}\right) + \left(\frac{1}{n+1} - \frac{2}{n+2} + \frac{1}{n+3}\right)$	M1	Substituting values – At least
	$(2 \ 3 \ 4) \ (3 \ 4 \ 5) \ (4 \ 5 \ 6)$		three correct sets of brackets
	$+(\frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+2})+(\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3})$	A1	Must have at least one correct
			algebraic set of brackets
	$=\frac{1}{2}-\frac{2}{3}+\frac{1}{3}$	A1	
	$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}$	Αı	
	$+\frac{1}{n+2}-\frac{2}{n+2}+\frac{1}{n+3}$	A1	
	n+2 $n+2$ $n+3$, , _	
	4		
	$=\frac{1}{6} - \frac{n+3-n-2}{(n+2)(n+3)}$		
	6 $(n+2)(n+3)$		
	1 1		
	$=\frac{1}{6}-\frac{1}{(n+2)(n+3)}$	A1	Convincing
	6 $(n+2)(n+3)$	(e)	
	5	[5]	
c)	$\sum_{r=1}^{3} A_r = \frac{1}{6} - \frac{1}{7 \times 8} = \frac{25}{168}$		
	$\sum_{r=1}^{N} A_r = \frac{1}{6} - \frac{1}{7 \times 8} = \frac{1}{168}$	B1	Both
	r=1 AND	DI	Both
	10		
	$\sum_{n=1}^{10} A_n = \frac{1}{1} - \frac{1}{10} = \frac{25}{100}$		
	$\sum_{r=1}^{10} A_r = \frac{1}{6} - \frac{1}{12 \times 13} = \frac{25}{156}$		
	25 25		
	168 : 156		
	13: 14	B1	
		[2]	
		[9]	

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)
FURTHER MATHEMATICS
UNIT 2 FURTHER STATISTICS A
2305U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 2 FURTHER STATISTICS A

Qu. No.	Solution	Mark	Notes
1 (a)	p = 0.0099	B1	
(b)	$E(X) = (0 \times 0.9 +) 2 \times 0.09 + 100 \times 0.0099 + 1000 \times 0.0001$	M1	FT "their p " Allow one slip
	$E(X) = 1.27$ $Var(X) = (0^{2} \times 0.9 +)2^{2} \times 0.09 + 100^{2} \times 0.0099 + 1000^{2} \times 0.0001 - 1.27^{2}$	A1 M1	FT "their p " and "their $E(X)$ " Allow one slip
	Var(X) = 197.7(471)	A1	Accept 198 from correct working
(c)(i)	£1.28	B1	FT their E(X)
(ii)	Valid explanation. e.g. People may be willing to pay for the excitement of the lottery. The lottery may be raising money for charity. People don't often make decisions based on mathematics. People could win a lot of money.	Total [7]	

2 (a)	$S_{xy} = 113.16 - \frac{62.8 \times 19.4}{10}$ $S_{xy} = -8.672$ 62.8^{2}	B1	B1 for each of S_{xy} , S_{xx} and S_{yy} .
	$S_{xx} = 413.44 - \frac{62.8^2}{10}$ $S_{xx} = 19.056$ $S_{yy} = 46.16 - \frac{19.4^2}{10}$	B1	
	$S_{yy} = 8.524$ $r = \frac{-8.672}{\sqrt{19.056 \times 8.524}}$	B1	
	$r = -0.68(0427 \dots)$	B1	B1 for r .
(b)	H_0 : $\rho=0$ H_1 : $\rho\neq0$ 5% two tail critical value = -0.6319 Since $-0.6804<-0.6319$ reject H_0 . It suggests that the rate of unemployment and the rate of wage inflation are not independent.	B1 B1 B1 E1	FT their r Accept in context Or CV = 0.6319 Or 0.6804 > 0.6319 Only award E1 if previous three B1 awarded E0 for categorical statements
(c)	Valid comment. e.g. This should cast doubt on Amy's opinion based on her answer in (b) Valid suggestion. e.g. She could look at more countries. She could come to different conclusions for different countries. She could consider more regions within each country	E1	FT their conclusion from (b)
(d)	The underlying distribution is bivariate normal. The data come from a bivariate normal distribution.	E1	
		Total [11]	

Total number of baskets, T, is		
$Po((2.1 + 1.9) \times 4)$ or $Po(16)$ or $Po(2.1 \times 4 + 1.9 \times 4)$	M2	M1 for Poisson and adding. M1 for multiplying by 4.
$P(T=20) = \frac{16^{20} \times e^{-16}}{20!}$	m1	Dependent on M2 Use of formula or calculator
= 0.0559	A1	cao
Exponential distribution Mean time between baskets= standard deviation =	B1	
		Must be clear that
5.7 minutes.	A1	5.7 is mean AND standard deviation
P (Klay doesn't score for the rest of the quarter) = $e^{(-1.9 \times 0.75)}$	M1	
= 0.2405	A1	
Alternative solution $\lambda = 1.425$ $P(X = 0) = 0.2405$	(M1) (A1)	M1 for Po(1.9 × 0.75) SC1 for $(e^{(-2.1 \times 0.75)} =)0.207$
Let F be the number of free throws he misses. $F \sim B(530, 0.04)$		
$P(F > 25) = 1 - P(F \le 25)$ = 0.169(1214)	M1 A1	
	Total [11]	
	$Po((2.1+1.9)\times 4) \text{ or } Po(16)$ or $Po(2.1\times 4+1.9\times 4)$ $P(T=20) = \frac{16^{20}\times e^{-16}}{20!}$ $= 0.0559$ Exponential distribution Mean time between baskets= standard deviation = $\frac{1}{2.1}\times 12$ 5.7 minutes. $P \text{ (Klay doesn't score for the rest of the quarter)} = e^{(-1.9\times 0.75)}$ $= 0.2405$ Alternative solution $\lambda = 1.425$ $P(X=0) = 0.2405$ Let F be the number of free throws he misses. $F \sim B(530, 0.04)$ $P(F > 25) = 1 - P(F \le 25)$	$Po\left((2.1+1.9)\times 4\right) \text{ or } Po(16)$ or $Po\left(2.1\times 4+1.9\times 4\right)$ m1 $P(T=20) = \frac{16^{20}\times e^{-16}}{20!}$ m1 $= 0.0559$ A1 Exponential distribution Mean time between baskets= standard deviation = $\frac{1}{2.1}\times 12$ 5.7 minutes. A1 $P\left(\text{Klay doesn't score for the rest of the quarter}\right) = e^{(-1.9\times 0.75)}$ M1 $= 0.2405$ A1 Alternative solution $\lambda = 1.425$ $P(X=0) = 0.2405$ (M1) $Let F \text{ be the number of free throws he misses.}$ $F \sim B(530, 0.04)$ M1 $P(F > 25) = 1 - P(F \le 25)$ M1 $= 0.169(1214 \dots)$ M1 $A1$

				T
4 (a)	The pdf must be positive (or zero) $f(r)$	≥ 0	B1	B1 for implying that the pdf must be positive or zero (or cannot be negative)
	Therefore $(b-4) \ge 0$ $b \ge 4$		B1	B1 for Correct statement leading to correct conclusion. ALTERNATIVE B1 for "If $b < 4$, $f(r)$ is negative." B1 for stating that is not possible.
4 (b) (i)	$\int_{1}^{4} kr(4-r)dr = 1$ $\int_{1}^{4} (4kr - kr^{2})dr = 1$		M1	M1 Attempt at integration at least one power of r increasing by 1. Limits and = 1 not required here.
	$k \left[\frac{4r^2}{2} - \frac{r^3}{3} \right]_1^4 = 1$		A1	A1 Correct integration.
	$k\left[\left(\frac{64}{2} - \frac{64}{3}\right) - \left(\frac{4}{2} - \frac{1}{3}\right)\right] = 1$		m1	m1 substitution of correct limits and =1.
	$k = \frac{1}{9}$	*ag	A1	Convincing

4 (b) (ii)			
	$F(r) = \frac{1}{9} \int_{1}^{r} t(4-t)dt$	M1	M1 Attempt at integrating $f(t)$ at least one power of t increasing by 1. Limits not required here.
	$= \frac{1}{9} \left[\frac{4t^2}{2} - \frac{t^3}{3} \right]_1^r$ $= \frac{1}{9} \left[2r^2 - \frac{r^3}{3} - \left(2 - \frac{1}{3}\right) \right]$	A1	A1 Correct integration.
	$= \frac{1}{9} \left[2r^2 - \frac{r^3}{3} - \left(2 - \frac{1}{3}\right) \right]$ $= \frac{1}{9} \left(2r^2 - \frac{r^3}{3} - \frac{5}{3} \right)$	m1	m1 substituting correct limits Condone upper limit = x for m1 only
	,		
	$=\frac{1}{27}(6r^2-r^3-5)$	A1	oe Mark final expression for $1 \le r \le 4$
(iii)	$P(2 \le R \le 3) = F(3) - F(2)$ $= \frac{22}{11} - \frac{11}{11}$	M1	oe
	$= \frac{27}{27} - \frac{27}{27} = \frac{11}{27}$	A1	FT their $F(r)$ for equivalent difficulty and provided probability is valid.
		Total [12]	

5	Let the rand	om variable	e X be the r	number of	6s		
	thrown from 3 dice. If the dice are unbiased then $X \sim B(3, \frac{1}{6})$					B1	si (implied by at least 3 correct expected
	H_0 : The data distribution H_0		odelled by	the Binom	nial	B1	frequencies) or equivalent
	H ₁ : The data distribution h		e modelled	by the Bin	omial		
	Number of sixes	0	1	2	3		
	Observed Expected	625 636.574	384 381.944	81 76.389	10 5.093	M1 A1	At least one correct. All correct.
	Use of χ^2 sta	$at = \sum \frac{O}{O}$	$\frac{-E)^2}{E}$ or	$\sum \frac{O^2}{E}$	-N	M1	Must see at least 2 terms added
	$= \frac{(625 - 636.574)^2}{636.574} + \frac{(384 - 381.944)^2}{381.944} + \frac{(81 - 76.389)^2}{76.389} + \frac{(10 - 5.093)^2}{5.093}$				m1	$\frac{\frac{625^2}{636.574} + \frac{384^2}{381.944} + \frac{81^2}{76.389} + \frac{10^2}{5.093} - 1100}$	
		:	= 5.23			A1	Accept anything which rounds to 5.2
	DF = 3 5% CV = 7.815					B1 B1	Accept other test levels. 1% CV = 11.345 10% CV = 6.251
	Since $5.23 < 7.815$ we cannot reject H_0 . There is insufficient evidence at the 5% level to conclude that the set of dice are not fair.			B1 E1	FT their χ^2 Only award E1 if all five previous B1 awarded E0 for categorical statements		
						Total [11]	

6 (a)	H_0 : Social media usage is independent of age. H_1 : Social media usage is not independent of age	B1	
(b)	1266×352 1953	B1	oe
	=228.18 *ag		
(c)	$s = \frac{(412 - 342.27)^2}{342.27}$	M1	
	s = 14.2(0595699)	A1	
(d)	$(4-1) \times (2-1) = 3$ degrees of freedom.	B1	
	5% CV = 7.815	B1	
	Add χ^2 contributions	M1	M1A1 if statement
	29.34 + 14.21 + 0.06 + 62.94 + 54.07 + 26.18 + 0.11 + 115.99		along the lines of "one contribution is
	= 302.90	A1	> 7.815"
	Since $302.91 > 7.815$ we can reject H_0 .	B1	FT provided χ^2 >
	There is (strong) evidence to suggest that social media usage is not independent of age.	E1	7.815 Only award E1 if previous three B1
			awarded and part (a) correct
(e)	Valid explanation. e.g. The $\it p$ value would not lead to rejecting $\it H_0$, which is the incorrect conclusion.	E1	
		Total [11]	

$b = \frac{96.60984}{88.42142}$	M1	
b = 1.09(26)	A1	Accept 1.1
$a = \frac{2738.656}{30} - 1.09(26 \dots) \times \frac{2850.836}{30}$	M1	FT their 'b' for M1
a = -12.5(39)	A1	FT their 'b', following A0. Answer correct to 3sf
y = -12.5 + 1.09x	A1	A1 FT 'their' gradient and intercept provided at least one M1 awarded.
Africa because 70 is out of the data set for Asia, The data points for Africa are closer to a straight line than those for the Arab World.	E1 E1	
	Total [7]	
	$b = \frac{1.09(26)}{88.42142}$ $b = 1.09(26)$ $a = \frac{2738.656}{30} - 1.09(26) \times \frac{2850.836}{30}$ $a = -12.5(39)$ $y = -12.5 + 1.09x$ Africa because 70 is out of the data set for Asia, The data points for Africa are closer to a straight	$b = \frac{1.09(26 \dots)}{88.42142}$ $b = 1.09(26 \dots)$ $a = \frac{2738.656}{30} - 1.09(26 \dots) \times \frac{2850.836}{30}$ $a = -12.5(39 \dots)$ Africa because $70 \text{ is out of the data set for Asia,}$ The data points for Africa are closer to a straight line than those for the Arab World. E1 Total

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)
FURTHER MATHEMATICS
UNIT 3 FURTHER MECHANICS A
2305U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 3 FURTHER MECHANICS A

Q1	Solution	Mark	Notes
(a)	Angular velocity $\omega = \frac{v}{r}$	M1	Used
	$\omega = \frac{8}{2}$ $\omega = 4 \qquad (\text{rad s}^{-1})$		
	$\omega = 4 \text{(rad s}^{-1}\text{)}$	A1	cao
		[2]	
(b)	N2L towards centre O Tension in the string $T = 1 \cdot 2a$	M1	Used with $a = \begin{cases} \frac{v^2}{r} \\ \omega^2 r \end{cases}$
	$T = 1 \cdot 2 \times \frac{8^2}{2}$ or $T = 1 \cdot 2 \times 4^2 \times 2$		
	$T = 38 \cdot 4 \text{ (N)}$ or $\frac{192}{5}$	A1	FT their ω from (a)
		[2]	
	Total for Question 1	4	

Q2	Solution	Mark	Notes
(a)	Using KE = $\frac{1}{2}mv^2$ with $m = 60, v = 7 \cdot 8$	M1	Used
	$KE = \frac{1}{2}(60)(7 \cdot 8)^2$		
	$KE = 1825 \cdot 2 \text{ (J)}$ or $\frac{9126}{5}$	A1	cao
	5	[2]	
(b)	Using expression for PE or KE	M1	
	At start (platform),		
	$PE = 60g(10) \qquad (= 600g = 5880 \text{ J})$	A1	
	At end (water),		
	$KE = \frac{1}{2}(60)v^2 \qquad (=30v^2)$	A1	
	Conservation of energy	M1	Used, all terms, allow sign errors
	$1825 \cdot 2 + 5880 = 30v^2$ $(7705 \cdot 2 = 30v^2)$	A1	All correct, oe FT KE from (a)
	$v^2 = 256 \cdot 84$ or $\frac{6421}{25}$		
	$v = 16 \cdot 0262 \dots \approx 16 (\text{ms}^{-1})$	A1	Convincing, cso
		[6]	
(c)	Work-energy principle	M1	Used, all terms, allow sign
	$1825 \cdot 2 + 5880 = \frac{1}{2}(60)(13)^2 + E_{lost}$	A1	errors All correct, oe FT KE from (a)
	$(7705 \cdot 2 = 5070 + E)$		FT PE from (b)
	$E_{lost} = 2635 \cdot 2$ (J) or $\frac{13176}{5}$	A1	FT their KE and PE
		[3]	
	Alternative Solution		
	Taking a difference in KE	(M1)	At least one v^2 correct
	$E_{lost} = \frac{1}{2}(60) \left(\frac{6421}{25}\right) - \frac{1}{2}(60)(13)^2$	(A1)	All correct, oe Accept $\frac{1}{2}(60)(16)^2 = 7680$
	$E_{lost} = 2635 \cdot 2$ (J) or $\frac{13176}{5}$	(A1)	$E_{lost} = 2610$ (J) for $v = 16$
		([3])	
	Total for Question 2	11	

Q3	Solution	Mark	Notes
(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Conservation of momentum	M1	Attempted. Allow 1 sign error
	$(9)(4m) + (-3 \cdot 5)(3m) = (1 \cdot 5)(4m) + (v)(3m)$	A1	All correct
	$25 \cdot 5 = 6 + 3v$		
	$v = 6 \cdot 5 (ms^{-1})$	A1	Convincing
		[3]	
(b)	Restitution	M1	Attempted. Allow 1 sign error
	$6 \cdot 5 - 1 \cdot 5 = -e(-3 \cdot 5 - 9)$	A1	All correct, oe
	$5 = 12 \cdot 5e$		
	$e = \frac{2}{5}$	A1 [3]	cao
(c)	Change in momentum = 36	M1	
	$(4m)(9-1\cdot 5)=36 (30m=36)$	A1	Correct equation, oe
	$m=1\cdot 2$	A1	$(3m)(6 \cdot 53 \cdot 5) = 36$ cao
		[3]	
(d)	Valid reason,	E1	
	eg. Radii are equal Velocities are parallel to line of centres	[1]	
	Total for Question 3	10	

Q4	Solution	Mark	Notes
(a)	$(9i + 6j - 12k) + (6i - 7j + 3k) + F_3 = 0$	M1	
	$\mathbf{F_3} = -15\mathbf{i} + \mathbf{j} + 9\mathbf{k} \qquad (N)$	A1	
		[2]	
(b)	(i) $\mathbf{AB} = \mathbf{r}_B - \mathbf{r}_A = (8\mathbf{i} - 5\mathbf{j} - \mathbf{k}) - (2\mathbf{i} - 9\mathbf{j} + 7\mathbf{k})$	M1	or BA
	$= 6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}$	A1	oe, cao
	$\mathbf{F_1} = \frac{3}{2}\mathbf{AB}$ or $\mathbf{AB} = \frac{2}{3}\mathbf{F_1}$ (: parallel)	A1	Convincing
	(ii) Work done by $\mathbf{F_1} = \mathbf{F_1} \cdot \mathbf{AB}$ = $(9\mathbf{i} + 6\mathbf{j} - 12\mathbf{k}) \cdot (6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k})$ = $(9)(6) + (6)(4) + (-12)(-8)$	M1	Used. FT AB
	= 174 (J)	A1	FT their AB
	(iii) Work done = change in KE		
	$174 = \frac{1}{2}(0.5)v^2 - 0$	M1	FT their '174'
	$v = 26 \cdot 38(18 \dots) \text{ (ms}^{-1})$	A1	$v = \sqrt{696} = 2\sqrt{174}$
		[7]	FT their '174'
	Total for Question 4	9	

Q5	Solution	Mark	Notes
(a)	Before After (at extension x) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
	Using expression for PE = mgh or EE = $\frac{\lambda x^2}{2L}$	M1	
	Loss in PE = $2g(2 \cdot 5 + x)$ (= $5g + 2gx$)	A1	
	Gain in EE = $\frac{\lambda x^2}{2(2.5)} = \frac{30gx^2}{2(2.5)}$ (= 6gx ²)	A1	
	Gain in KE = $\frac{1}{2}(2)v^2$ (= v^2)	B1	
	Conservation of energy $v^2 + 6gx^2 = 5g + 2gx$	M1	Used with PE,KE and EE All terms, allow sign errors M0: $PE = 5g$ alone
	$v^2 = g(5 + 2x - 6x^2)$	A1	Convincing
		[6]	
(b)	At maximum extension, $v = 0$ $0 = g(5 + 2x - 6x^2)$	M1	Used
	$6x^2 - 2x - 5 = 0$		
	Attempting to solve		_
	$x = \frac{2 \pm \sqrt{124}}{12}$		$x = \frac{1 \pm \sqrt{31}}{6}$ from calculator
	$x = 1 \cdot 09(4627 \dots)$ (or $x = -0 \cdot 76(1294 \dots)$)	A1	cao $x = -0.76 \dots$ clearly discarded
, ,		[3]	
(c)	(i) When P attains its maximum speed, $a=0$ so that Tension in $OP=2g$	M1	Hooke's Law used with $T = 2g$
	$\frac{30gx}{2.5} = 2g$	A1	
	$x = \frac{1}{6} (m)$	A1	
	Alternative Solution to (i)		
	(i) Differentiating to find for maximum v^2 (or v) $\frac{d(v^2)}{dx} = 0$	(M1)	Condone the following incorrect notation $\frac{dv}{dx} = g(2 - 12x)$
	g(2-12x)=0	(A1)	oe
	$\chi = \frac{1}{6}$	(A1)	

(ii) Sub. $x = \frac{1}{6}$ into $v^2 = g(5 + 2x - 6x^2)$	M1	FT their $x \ge 0$
Maximum speed is 7 · 11(57103) (ms ⁻¹)	A1	$v = \sqrt{\frac{31g}{6}} = \sqrt{\frac{1519}{30}} .$
	[5]	FT their $x \neq 0$ for $\frac{v^2}{v^2} > 0$
Total for Question 5	14	

Q6	Solution	Mark	Notes
(a)	$R = 40v$ α $3500g \sin \alpha$ $3500g$		$3500g\left(\frac{3}{49}\right) = 2100$
	$F = \frac{P}{25}$	B1	
	Using N2L up slope $F - R - mg \sin \alpha = ma$	M1 A1	All forces, dim. correct M1: Allow $mg \cos \alpha$ or sign errors, but not both
	$\frac{P}{25} - 40(25) - 3500g\left(\frac{3}{49}\right) = 3500(-0.2)$	A1	Correct equation FT their F
	$P = 60\ 000 \ (W)$ or $60\ (kW)$	A1	cao
		[5]	
(b)	$F = \frac{40 \times 1000}{20} (=2000)$	B1	si
	Using N2L with $a = 0$	M1	All forces, dim. correct M1: Allow $mg \cos \alpha$ or sign
	$F - R - mg \sin \alpha = 0$	A1	errors, but not both
	$2000 - 40(20) - 3500g \sin \alpha = 0$	A1	Correct equation FT their F
	$\sin \alpha = \frac{12}{343} = 0.03498 \dots$		
	$\alpha = 2^0$	A1	cao
		[5]	
	Total for Question 6	10	

Q7	Solution	Mark	Notes
(a)	$T \cos \theta$ $T \cos \theta$ $T \cos \theta$ $39 \cdot 2 \sin 60$ $39 \cdot 2 \cos 60$ B $2 \cdot 5g$		$\sin \theta = 0 \cdot 6$ $\cos \theta = 0 \cdot 8$
	Resolving vertically,	M1	All forces, dim. correct
	$T\cos\theta = (39\cdot 2)\cos 60 + 2\cdot 5g$	A1	-1 each error
	$T(0 \cdot 8) = (39 \cdot 2)(0 \cdot 5) + (2 \cdot 5)(9 \cdot 8)$	A1	
	$T = 55 \cdot 125$ (N)	A1	cao
		[4]	
(b)	Using N2L towards C ,	M1	All forces, dim. correct
	$T\sin\theta + (39\cdot 2)\sin 60 = 2\cdot 5a$	A1	Correct equation
	$(55 \cdot 125)(0 \cdot 6) + (39 \cdot 2)\left(\frac{\sqrt{3}}{2}\right) = (2 \cdot 5) \omega^2 r$	m1	$a = \begin{cases} \frac{\nu}{r} \\ \omega^2 r \end{cases}$
	$(55 \cdot 125)(0 \cdot 6) + (39 \cdot 2) \left(\frac{\sqrt{3}}{2}\right) = (2 \cdot 5) \omega^2(0 \cdot 9)$	B1	$r = 1 \cdot 5 \sin \theta$
	$\omega^2 = 29 \cdot 78808 \dots$		$r = 1 \cdot 5 \times 0 \cdot 6 = 0 \cdot 9$
	$\omega = 5 \cdot 45 \ (78463 \dots) \ (rad \ s^{-1})$	A1	cao
		[5]	
(c)	$v = \omega r$		
	$v = 5 \cdot 45 \dots \times 0 \cdot 9$ $v = 4 \cdot 91206 \dots$	M1	FT ω and $r \neq 1.5$
	$KE = \frac{1}{2}(2 \cdot 5)(4 \cdot 91206 \dots)^2$	m1	FT v
	$KE = 30 \cdot 16 (0438 \dots)$ (J)	A1	cao
	T. W. O	[3]	
	Total for Question 7	12	

2305U30-1 WJEC GCE AS Further Mathematics - Unit 3 Further Mechanics A MS S22/CB

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
FURTHER MATHEMATICS
UNIT 4 FURTHER PURE MATHEMATICS B
1305U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 4 FURTHER PURE MATHEMATICS B

			I
1. a)	Differentiating	M1	If identities used,
	$f'(x) = 3\cosh^2 x \sinh x - 3\sinh x \text{oe}$	A1	must be a valid
			attempt at
	At a stationary point, $f'(x) = 0$,		differentiation
	$3 \cosh^2 x \sinh x - 3 \sinh x = 0$	m1	
	$3 \sinh x \left(\cosh^2 x - 1\right) = 0$		
	$3 \sin x (\cos x - 1) = 0$		
	THEN		
	$3 \sinh x = 0$		
	x = 0		
	or		
	$\cosh^2 x - 1 = 0$		
	$\cosh x = 1$ or $\cosh x = -1$		
		A1	Award for any
	x = 0 no solutions	/ \ \	solution of
			hyperbolic equation
	\therefore The only stationary point is at $x = 0$.	A1	Must be seen to
			discard equations
			with no solutions
			and show all
			remaining equations
			lead to $x = 0$
	OB		
	OR		
	$As \cosh^2 x - 1 = \sinh^2 x$	(0.4)	Correct use of
	$3\sinh x \left(\cosh^2 x - 1\right) = 3\sinh^3 x = 0$	(A1)	
	$\therefore \sinh^3 x = 0$		identity
	sinh x = 0		
	x = 0		
	\therefore The only stationary point is at $x = 0$.	(A1)	
	$\frac{1}{2}$ The only stationary point is at $x=0$.	` ′	

b)	METHOD 1		
	Find gradient or value of f either side of $x = 0$	M1	Accept graphical
	e.g. $f'(-1) = -4.869 \dots < 0$ and $f'(1) = 4.869 \dots > 0$		method
	e.g. $\sinh x < 0$ and therefore $\sinh^3 x < 0$ for $x < 0$ and		
	$\sinh x > 0$ and therefore $\sinh^3 x > 0$ for $x > 0$		
	Therefore, the stationary point at $x = 0$ is a minimum	A1	cao
	METHOD 2		
	Differentiating and substituting $x = 0$	(M1)	
	$f''(x) = 3\cosh^3 x + 6\cosh x \sinh^2 x - 3\cosh x \text{ oe}$ f''(0) = 3 + 0 - 3 = 0	(1011)	
	Finding the gradient either side of $x = 0$ AND		
	Stating the stationary point at $x = 0$ is a minimum	()	
0)	When $x = 0$, $f(x) = -2$	(A1)	cao
c)	When $x = 0$, $f(x) = -2$		
	Therefore, largest range is $[-2, \infty)$	B1	Allow
			'Range $f(x) \ge -2$ '

2.	1 4 4 0 0 50		
2.	Let $z^4 = 9 - 3\sqrt{3}i$		
	$ z^4 = \sqrt{9^2 + (3\sqrt{3})^2} = \sqrt{108} \text{ or } 6\sqrt{3}$	B1	si
	Finding the radius of the circle	M1	FT their $ z^4 $
	e.g. Radius of circle = $\sqrt[8]{108}$ or $108^{\frac{1}{8}}$ = 1.795	A1	
	Circle: $x^2 + y^2 = 3.22$ or 1.795^2	A1	FT their radius Allow 1.8^2 Allow $ z = 108^{1/8}$
2 0)	2t 1_t2		
3. a)	Substituting $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$	M1	
	$4 \times \frac{2t}{1+t^2} + 5 \times \frac{1-t^2}{1+t^2} = 3$		
	$4 \times 2t + 5(1 - t^2) = 3(1 + t^2)$ oe $8t + 5 - 5t^2 = 3 + 3t^2$	A1	Removal of fractions
	$4t^2 - 4t - 1 = 0$	A1	convincing
b)	Solving $4t^2 - 4t - 1 = 0$	M1	M0A0 no working
	$t = \frac{1 \pm \sqrt{2}}{2}$ (-0.207106)	A1	morto no monung
	Attempting to solve for θ $\tan \frac{\theta}{2} = \frac{1-\sqrt{2}}{2}$ or $\tan \frac{\theta}{2} = \frac{1+\sqrt{2}}{2}$	M1	FT their t
	$\frac{\theta}{2} = -11.7 \dots (+180n)$	A1	$\frac{\theta}{2} = -0.2 \dots (+\pi n)$
	$\frac{\text{or}}{\frac{\theta}{2}} = 50.36 \dots (+180n)$	(A1)	$\frac{\theta}{2} = -0.2 \dots (+\pi n)$ $\frac{\theta}{2} = 0.87 \dots (+\pi n)$
	Then, the general solution, $\theta = (-23.4(018) + 360n)^{\circ}$ oe or	A1	$\theta = (-0.408 + 2\pi n)^{c}$
	$\theta = (100.7(214 \dots) + 360n)^{\circ}$ oe	A1	$\theta = (1.758+2\pi n)^{c}$
			M0 M0 for -23.4 and 100.7 without working
4.	$Volume = \pi \int_{1}^{3} \sin^{2} y dy$	B1	Correct notation required
	$\pi \int_{1}^{3} \frac{1 - \cos 2y}{2} \mathrm{d}y$	M1	Integrable form with no more than 1 slip
	$\pi \left[\frac{1}{2}y - \frac{1}{4}\sin 2y \right] \frac{3}{1}$	A1	oe cao
	$\pi \left[\left(\frac{3}{2} - \frac{1}{4}\sin 6 \right) - \left(\frac{1}{2} - \frac{1}{4}\sin 2 \right) \right]$	m1	Attempt to substitute in correct limits
	Volume = 4.08	A1	cao

5. a)	$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 2 & 7 & 0 & 3 \end{pmatrix}$		
	$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 2 & -5 & 3 & 8 \\ 0 & 6 & -2 & 0 \end{pmatrix}$	M1	Attempt at row reduction
	$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -9 & 3 & 2 \\ 0 & 6 & -2 & 0 \end{pmatrix}$	A1	1 row a multiple of another row
	$\begin{pmatrix} 1 & 2 & 0 \\ 0 & -9 & 3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 4 \\ 3 \end{pmatrix}$	A1	oe
	Valid statement. Eg. As $0x + 0y + 0z \neq \frac{4}{3}$ there are no solutions.	E1	If M0, SC1 det A = 0 SC1 No unique
			solutions
b)	A correct statement involving 3 planes with no incorrect statements e.g. 3 planes do not meet at a single point	B1	FT their (a)
6.	$\cos 2\theta - \cos 4\theta = -2\sin \frac{2\theta + 4\theta}{2}\sin \frac{2\theta - 4\theta}{2}$	M1	M0 no working
	$-2\sin 3\theta \sin(-\theta) = \sin 3\theta$	A1	
	$2\sin 3\theta \sin \theta - \sin 3\theta = 0$		
	$\sin 3\theta \left(2\sin \theta - 1\right) = 0$	A1	
	$\sin 3\theta = 0 \qquad \qquad \sin \theta = \frac{1}{2}$	A1	FT one slip for A1A1A1 Both solutions
	$3\theta = 0, \pi, 2\pi, 3\pi$		DOUT SOLUTIONS
	$\theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi \qquad \theta = \frac{\pi}{6}, \frac{5\pi}{6}$	A1A1	A1 each set of solutions If A1A1, penalise -1 for use of degrees
7. a)	$4x^2 + 10x - 24 = 4\left[x^2 + \frac{5}{2}x - 6\right]$	M1	$4x^{2} + 10x - 24$ $= 4\left[x^{2} + \frac{5}{2}x\right] - 24$
	$= 4\left[\left(x + \frac{5}{4} \right)^2 - \frac{121}{16} \right]$	m1	oe
	$=4\left(x+\frac{5}{4}\right)^2-\frac{121}{4}$	A1	
	Therefore, $a = 4$ $b = \frac{5}{4}$ $c = -\frac{121}{4}$		

b)	METHOD 1:		
	$\int_{3}^{5} \frac{6}{\sqrt{4x^2 + 10x - 24}} \mathrm{d}x$		
	$\int_{3} \sqrt{4x^2 + 10x - 24} dx$		
	$=\int_{0}^{5}\frac{6}{x}$	M1	M0 no working
	$= \int_{3}^{5} \frac{6}{\sqrt{4\left(x + \frac{5}{4}\right)^{2} - \frac{121}{4}}} dx$		FT (a) for equivalent difficulty
	$= \int_{3}^{5} \frac{6}{2\sqrt{\left(x + \frac{5}{4}\right)^{2} - \frac{121}{16}}} dx$	m1	Extracting a factor of
	$2\sqrt{(x+\frac{3}{4})} - \frac{121}{16}$		$\sqrt{4}$ from denominator
	$= \left[3\cosh^{-1}\left(\frac{x+\frac{5}{4}}{\sqrt{\frac{121}{16}}}\right) \right]^5$	A1	oe
	r (4 16 / 1 ₃		
	$= \left[3\cosh^{-1} \left(\frac{4x+5}{11} \right) \right]_3^5$		
	$= \left[3\cosh^{-1}\left(\frac{25}{11}\right) - 3\cosh^{-1}\left(\frac{17}{11}\right) \right]$	m1	
	= 1.379	A1	cao Must be 3d.p.
	METHOD 2:		
	$\int_{3}^{5} \frac{6}{\sqrt{4x^2 + 10x - 24}} \mathrm{d}x$		
	$=\int_{-\infty}^{5} \frac{6}{dx}$	(M1)	M0 no working
	$= \int_{3}^{5} \frac{6}{\sqrt{4\left(x + \frac{5}{4}\right)^{2} - \frac{121}{4}}} dx$	(IVII)	FT (a) for equivalent difficulty
	$= \int_{3}^{5} \frac{6}{2\sqrt{\left(x + \frac{5}{4}\right)^{2} - \frac{121}{16}}} dx$	(m1)	Extracting a factor of
	$2\sqrt{(x+4)} - \frac{16}{16}$		$\sqrt{4}$ from denominator
	$= \left[3\ln\left\{ x + \frac{5}{4} + \sqrt{\left(x + \frac{5}{4}\right)^2 - \frac{121}{16}} \right\} \right]_3^5$	(A1)	
	$= 3\ln\left[\frac{25}{4} + \sqrt{\frac{504}{16}}\right] - 3\ln\left[\frac{17}{4} + \sqrt{\frac{168}{16}}\right]$	(m1)	
	$= 3\ln\left[\frac{25+\sqrt{504}}{17+\sqrt{168}}\right] = 3\ln\left[\frac{25+6\sqrt{14}}{17+2\sqrt{42}}\right]$		
	= 1.379	(A1)	cao Must be 3d.p.

			T
8.	$x = \sinh y$ $x = \frac{e^{y} - e^{-y}}{2}$	B1	
	$2xe^{y} = (e^{y})^{2} - 1$ $\therefore (e^{y})^{2} - 2xe^{y} - 1 = 0$		
		B1	
	Using quadratic formula, $e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2} \qquad \left(= x \pm \sqrt{x^{2} + 1}\right)$	M1	
	$y = \ln\left(x \pm \sqrt{x^2 + 1}\right)$	A1	Allow omission of ±
		A1	
	As $x - \sqrt{x^2 + 1} < 0$, $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$	B1	Justification may be
	,		seen earlier
9.	$\left(\cos\frac{\theta}{3} + i\sin\frac{\theta}{3}\right)^3$		
a) i)	$\left(\cos\frac{3}{3} + 1\sin\frac{3}{3}\right)$ $\cos^{3}\frac{\theta}{3} + 3\cos^{2}\frac{\theta}{3}\left(i\sin\frac{\theta}{3}\right) + 3\cos\frac{\theta}{3}\left(i\sin\frac{\theta}{3}\right)^{2} + \left(i\sin\frac{\theta}{3}\right)^{3}$	M1	Unsimplified
	$= \cos^{3} \frac{\theta}{3} + 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} + 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} - 4 \sin^{3} \frac{\theta}{3}$ $= \cos^{3} \frac{\theta}{3} + 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} - 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} - 4 \sin^{3} \frac{\theta}{3}$	A1	Allow cis notation
	3 3 3 3 3	Α1	
ii)	$\left(\cos\frac{\theta}{3} + i\sin\frac{\theta}{3}\right)^3 = \cos\theta + i\sin\theta$	B1	si
	$\therefore \cos \theta = \cos^3 \frac{\theta}{3} - 3 \cos \frac{\theta}{3} \sin^2 \frac{\theta}{3}$	M1	FT (i) for sign error only
	$=\cos^3\frac{\theta}{3} - 3\cos\frac{\theta}{3}\left(1 - \cos^2\frac{\theta}{3}\right)$	A1	
	$=4\cos^3\frac{\theta}{3}-3\cos\frac{\theta}{3}$	A1	cao convincing
b)	METHOD 1: $4 = 3^{\theta} + 3 = 9^{\theta}$	M1	Substitution
	$\frac{\cos\theta}{\cos\frac{\theta}{3}} = \frac{4\cos^3\frac{\theta}{3} - 3\cos\frac{\theta}{3}}{\cos\frac{\theta}{3}} = 1$		
		A1	Removing fraction
	$4\cos^3\frac{\theta}{3} - 4\cos\frac{\theta}{3} = 0$		
	$4\cos\frac{\theta}{3}\left(\cos^2\frac{\theta}{3}-1\right)=0$		
	$\cos\frac{\theta}{3} = 0$ (not a possible solution in this equation)		
	or $\cos\frac{\theta}{3} = \pm 1$	A1	All three (including ±1)
	When $\cos \frac{\theta}{3} = 1$, $\frac{\theta}{3} = 2n\pi$ $\therefore \theta = 6n\pi$	M1	Use of general solution of $\cos \theta$
	When $\cos \frac{\theta}{3} = -1$, $\frac{\theta}{3} = \pi + 2n\pi$		
	$ \therefore \ \theta = 3\pi + 6n\pi $ General solution: $\theta = 3n\pi$	A1 A1	Either θ

$\frac{\text{METHOD 2:}}{\frac{\cos \theta}{3}} = 1$		
$\cos\theta - \cos\frac{\theta}{3} = 0$	(B1)	
Then, $-2\sin\frac{\theta + \frac{\theta}{3}}{2}\sin\frac{\theta - \frac{\theta}{3}}{2} = 0$	(M1) (A1)	
Therefore, $\sin \frac{2\theta}{3} = 0$ or $\sin \frac{\theta}{3} = 0$	(A1)	Both
$\frac{2\theta}{3} = n\pi$ or $\frac{\theta}{3} = n\pi$	(M1)	
$\theta = \frac{3}{2}n\pi$ or $\theta = 3n\pi$		
Odd multiple of $\frac{3}{2}n\pi$ are not a solution because $\cos\theta=0$		
$\theta = 3n\pi$	(A1)	

10.	$\det A = 4(\lambda \times \lambda) - (8 \times 8)$	M1	oe
a)	$\det A = 4\lambda^2 - 64$	A1	
	Singular when det A = 0		
	METHOD 1:		
	$4\lambda^2 - 64 = 0$ $\lambda^2 = 16$	M1	
	$\lambda = \pm 4$	A1	
	so there are two values where A is singular		
	METHOD 2: $4\lambda^2 - 64 = 0$	(M1)	
	$4\lambda^{2} - 64 = 0$ Discriminant = $0^{2} - (4 \times 4 \times -64) = 1024$		
	As 1024 > 0 there are two roots of the equation so there are two values where A is singular	(A1)	Must reference >0
	_		
b) i)	Cofactor matrix: $\begin{pmatrix} 9 & -8 & -12 \\ -24 & 12 & 32 \\ -16 & 8 & 12 \end{pmatrix}$		
	\-16 8 12 /		
	Adjugate matrix = $\begin{pmatrix} 9 & -24 & -16 \\ -8 & 12 & 8 \\ -12 & 32 & 12 \end{pmatrix}$	D 0	A.II.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B3	All correct
			B2 for 7 or 8 correct B1 for 5 or 6 correct
ii)	$\det A = (4 \times 3^2) - 64 = -28$	B1	FT their (a)
	$\therefore A^{-1} = \frac{1}{-28} \begin{pmatrix} 9 & -24 & -16 \\ -8 & 12 & 8 \\ -12 & 32 & 12 \end{pmatrix}$	B1	FT their adjugate
	-20\-12 32 12 <i>/</i>		Mark final answer

	2v1	1	T I
11. a) i)	$y = e^{3x} \sin^{-1} x$ Use of product rule while differentiating	M1	
	$\frac{dy}{dx} = e^{3x} \cdot \frac{1}{\sqrt{1 - x^2}} + 3e^{3x} \sin^{-1} x$	A2	A1 each term ISW
ii)	METHOD 1: $y = \ln(\cosh(2x^2 + 7x))^2 = 2\ln(\cosh(2x^2 + 7x))$	M1	Log rule AND chain rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 \times \sinh(2x^2 + 7x) \times (4x + 7)}{\cosh(2x^2 + 7x)}$	A1 A1 A1	$ sinh(2x^2 + 7x) $ $ 4x + 7 $ oe Fully correct ISW
	METHOD 2: $y = \ln(\cosh(2x^2 + 7x))^2$		
	$\frac{dy}{dx} = \frac{2\cosh(2x^2 + 7x) \times \sinh(2x^2 + 7x) \times (4x + 7)}{(\cosh(2x^2 + 7x))^2}$	(M1) (A1) (A1)	Chain rule $sinh(2x^2 + 7x)$ $4x + 7$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 \times \sinh(2x^2 + 7x) \times (4x + 7)}{\cosh(2x^2 + 7x)}$	(A1)	oe Fully correct ISW
b)	METHOD 1: $1 = \frac{1}{\sqrt{1 + (y^2)^2}} \times \left(2y\frac{dy}{dx}\right)$	M1 A1	Must see chain rule Differentiate sinh ⁻¹ $2y \frac{dy}{dx}$
	$\sqrt{1+y^4} = 2y \frac{\mathrm{d}y}{\mathrm{d}x}$	A1	$\frac{2y}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{1+y^4}}{2y}$	A1	
	METHOD 2: $y^2 = \sinh x$ dy		
	$2y\frac{dy}{dx} = \cosh x$ $\frac{dy}{dx} = \frac{\cosh x}{2y}$	(M1) (A1) (A1) (A1)	$2y\frac{\mathrm{d}y}{\mathrm{d}x}$ Cosh
	METHOD 3: $y = \pm \sqrt{\sinh x}$ $dx = 1$, ,	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \frac{1}{2} \sinh^{-\frac{1}{2}} x \cosh x$	(M1) (A1) (A1) (A1)	$ \frac{1}{2}\sinh^{-\frac{1}{2}}x $ Cosh $ \pm $
	THEN: When $x = 1$, $y = \pm 1.084$,	B1	Both
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm 0.7117$	A1	cao Both
	y - 1.084 = 0.7117(x - 1)	B1	FT their y and dy/dx
	y + 1.084 = -0.7117(x - 1)	B1	FT their y and dy/dx

12.	Solve auxiliary $3t^2 + 5t - 2 = 0$ (3t - 1)(t + 2) = 0	M1	M0A0 no working
	$t = \frac{1}{3}$ or $t = -2$	A1	Both values
	Complementary function: $y = Ae^{\frac{1}{3}x} + Be^{-2x}$		
	Use particular integral of the form $Cx^2 + Dx + E$ $\frac{dy}{dx} = 2Cx + D$	M1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2C$	A1	Both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
	Therefore, $6C + 5(2Cx + D) - 2(Cx^2 + Dx + E) = 8 + 6x - 2x^2$	A1	Substitution
	$-2C = -2 \rightarrow C = 1$ $10C - 2D = 6 \rightarrow D = 2$ $6C + 5D - 2E = 8 \rightarrow E = 4$	A1	All values
	General Solution: $y = Ae^{\frac{1}{3}x} + Be^{-2x} + x^2 + 2x + 4$	M1	FT C,D,E for M1A1M1A1 Sub and differentiate
	$\frac{dy}{dx} = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} + 2x + 2$	A1	
	When $x = 0$, $y = A + B + 4 = 6$	M1	Substitution
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}A - 2B + 2 = 5$	A1	Both y and $\frac{dy}{dx}$
	Solving, $A = 3$ and $B = -1$	B1	сао
	Therefore, $y = 3e^{\frac{1}{3}x} - e^{-2x} + x^2 + 2x + 4$	B1	cao
	y - 30° C 1 A 1 Z A T	וט	

13. a)		G1 G1	For shape , to include reflection in the initial line. Fully correct
b) i)	$y = r \sin \theta$ $y = (2 - \cos \theta) \sin \theta$ $y = 2 \sin \theta - \sin \theta \cos \theta$ THEN $\left(y = 2 \sin \theta - \frac{1}{2} \sin 2\theta\right)$	M1	
	$\frac{dy}{d\theta} = 2\cos\theta - \cos 2\theta$ When parallel to initial line, $2\cos\theta - \cos 2\theta = 0$ $2\cos\theta - (2\cos^2\theta - 1) = 0$ $2\cos^2\theta - 2\cos\theta - 1 = 0$	M1 A1	convincing
	OR $\frac{dy}{d\theta} = 2\cos\theta - (\cos^2\theta - \sin^2\theta)$ When parallel to initial line, $2\cos\theta - (\cos^2\theta - \sin^2\theta) = 0$ $2\cos\theta - \cos^2\theta + (1-\cos^2\theta) = 0$	(A1)	
ii)	$2\cos^2\theta - 2\cos\theta - 1 = 0$ Solving $\cos\theta = \frac{2 \pm \sqrt{4 + 8}}{4}$ $\cos\theta = 1.366 \text{ therefore no solutions}$	(A1) M1	convincing
	or $\cos\theta = 1.366$ therefore no solutions or $\cos\theta = -0.366$ $\therefore \theta = 1.9455 \text{ or } 4.3377$ $r = 2.366$	A1 A1 B1	Both values FT their θ

14.	$\frac{6x^2 + 2x + 16}{x^3 - x^2 + 3x - 3} = \frac{6x^2 + 2x + 16}{(x - 1)(x^2 + 3)}$	M1 A1	Linear × Quadratic
	$\frac{6x^2 + 2x + 16}{(x-1)(x^2+3)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+3}$	M1	FT their factorising if linear × quadratic of
	$6x^2 + 2x + 16 = A(x^2 + 3) + (Bx + C)(x - 1)$	A1	equivalent difficulty
	When $x = 1$, $24 = 4A$ $\rightarrow A = 6$		
	When $x = 0$, $16 = 3A - C$ $\rightarrow C = 2$		
	Compare coefficients of x^2 : $6 = A + B$ $\therefore B = 0$	A2	A2 all 3 values A1 any 2 values
	$\int_{2}^{4} \frac{6x^{2} + 2x + 16}{x^{3} - x^{2} + 3x - 3} dx$		If M0, SC1 for $A = 6$, $B = 0$, $C = 2$.
	$= \int_{2}^{4} \left(\frac{6}{x - 1} + \frac{2}{x^2 + 3} \right) dx$	M1	FT their A , B , C provided $a \neq 0$ and $c \neq 0$
	$= \left[6\ln(x-1) + \frac{2}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} \right]_{2}^{4}$	A2	A1 each term
	= 7.93362 - 0.98966 = 6.944	A1	cao Answer only 0 marks

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
FURTHER MATHEMATICS
UNIT 5 FURTHER STATISTICS B
1305U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 5 FURTHER STATISTICS B

SUMMER 2022 MARK SCHEME

Qu. No.	Solution	Mark	Notes
1	$\bar{x} = 15.37$	B1	
	Standard error = $\sqrt{\frac{0.9}{10}}$	B1	$SE^2 = \frac{0.9}{10}$
	Use of $\bar{x} \pm z \times SE$	M1	FT their \bar{x} and SE $\neq \sqrt{0.9}$
	$=15.37 \pm 1.6449 \times \sqrt{\frac{0.9}{10}}$	A1	1.645 or better
	[14.88, 15.86]	A1	cao
		Total [5]	

Qu. No.	Solution	Mark	Notes
2 (a)(i)	P(X > 14) = 0.5793	M1A1	M1 for correct method (calculator or standardizing)
(ii)	$P(X > 14 \text{ for two out of three}) = 0.5793^2 \times 0.4207 \times 3$	M1	Ft for M1A1 "their (i)" and "1-(i)" awrt 0.423 or 0.424
	= 0.4235	A1	
		(4)	
(b)	Let $T = X_1 + X_2 + X_3 + \dots + X_8$ E(T) = 120 Var(T) = 8Var(X) Var(T) = 200 P(T > 160) = 0.00234 (3sf) Let $A = X_1 + X_2 + X_3$	B1 M1 A1 A1 (4)	cao 0.00233 from tables
	Let $B = X_1 + X_2 + X_3 + X_4 + X_5$ $A \sim N(45, 75)$ and $B \sim N(75, 125)$	B1	si
	Consider $U = B - 2A$ E(U) = -15	M1 A1	M1A0 for $E(U) = 105$ from $U = 2B - A$
	$Var(U) = Var(B) + 2^{2}Var(A)$ = 425	M1 A1	M1A1 for $Var(U) = 575$ from $U = 2B - A$
	P(U>0)	m1	Dependent on 1 st M1 and $U = B - 2A$ m0A0 if U = 2B - A
	= 0.2334	A1	cao 0.23270 from tables.
		(7)	
		Total [15]	

Qu. No.	Solution	Mark	Notes
3 (a)	Valid reason e.g. No knowledge of underlying distribution Data are ordinal. Interval scale assumption may not be valid.	E1 (1)	
(b)	 H₀: Students from the north and the south of the county are similarly stressed. H₁: Students from the north and the south of the county are NOT similarly stressed. 	B1	$H_0: \eta_N = \eta_S$ $H_1: \eta_N \neq \eta_S$
	Upper critical value = 22 Lower critical value = $5 \times 5 - 22 = 3$	B1	For either CV
	Use of the formula $U = \sum \sum z_{ij}$	M1	Attempt to use
	U = 4 + 0 + 4 + 3 + 4 OR $U = 1 + 5 + 1 + 2 + 1= 15 = 10$	A1	
	Since 15 < 22 OR 10 > 3 and there is insufficient	B1	FT their CV and <i>U</i> cso
	evidence to reject H_0 . There is not enough evidence to say that students from	E1	C50
	the North and from the South have different stress levels.	(6)	
(c)	Valid improvement. e.g. Bigger sample size.	E1	
	e.g. Use a control test to see if students from the North and South are generally more stressed.	(1)	
		Total [8]	

Qu. No.	Solution	Mark	Notes
4 (a)	$\hat{p} = \frac{940}{2000} = 0.47$	B1	
	$ESE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	M1	FT their \hat{p} for M1A1
	$= \sqrt{\frac{0.47 \times 0.53}{2000}}$	IVII	
	$= 0.01116 \dots$	A1	
	95% confidence limits are $\hat{p} \pm z \times \text{ESE}$	M1	FT their \hat{p} and ESE for M1A1
	$0.47 \pm 1.96 \times 0.01116 \dots$	A1	000
	Giving [0.448, 0.492]	A1	cao
		(6)	
(b)	Two valid reasons. Eg. We have used an approximate value for p (in	E2	E1 for one reason
	calculating the standard error).	(2)	
	The binomial distribution has been approximated by the normal distribution.	(2)	
	No continuity correction has been used.		
(c)	0.53×0.47		Full FT their \hat{p}
	$2.5758 \dots \times \sqrt{\frac{0.53 \times 0.47}{n}} \le 0.02$	M1	Attempt at equation or inequality with 2.5758, n and 0.02 oe
	$\frac{2.5758 \times \sqrt{0.53 \times 0.47}}{3.02} \le \sqrt{n}$		Correct equation or inequality.
	0.02	A1	4132.4295 from $Z_{0.995} = 2.576$
	$n \ge 4131.88 \dots$	A1	2133 from Z _{0.995} = 2.576
	Therefore, an additional (4132 – 2000 =) 2132 people.	A1	
		(4)	
		Total [12]	

Qu. No.	Solution	Mark	Notes
5 (a)	$\bar{x} = \frac{2163}{50}$		
	= 43.26	B1	
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2163^2}{2}$	M1	
	$s^{2} = \frac{1}{49} \times \left(98508 - \frac{2163^{2}}{50}\right)$ $s^{2} = 100.7473(469 \dots) \text{or} s = 10.0(3729779)$	A1	si
	H_0 : $\mu = 38$ H_1 : $\mu > 38$	B1	
	Under H_0 , $\bar{X} \sim N\left(38, \frac{100.747}{50}\right)$		
	30 /		Alternative method
	p -value = $P(\bar{X} > 43.26 \mid H_0 \text{ is true})$	M1	M1 for Test statistic =
	<i>p</i> -value = 0.000105	A1	$\frac{43.26-38}{10.03729779/\sqrt{50}}$ if standardising. A1 <i>p</i> -value from tables = 0.00010
	Since $p \ll 0.05$ there is strong evidence to reject H_0 .	m1	
	There is strong evidence to reject the laboratory's claim that the average time taken for test results to be returned is 38 hours.	A1	FT from their <i>p</i> -
	Valid Headline implying failure on the part of the laboratory. e.g. Lab lets down patients.	B1	value and corresponding conclusion
	e.g. Laboratory takes longer than claimed to process test results.	(9)	above
(b)	Valid explanation. e.g. Because n is large, the central limit theorem allows us to	E1	
	use the normal distribution. e.g. Because n is large, the CLT allows us to assume that the distribution of the sample mean is normal.	(1)	
(c)	Valid explanation. e.g. Random sampling eliminates the bias that may occur from	E1	
	taking a batch from, say, the same day. e.g. 50 consecutive results might all come from a time when the process is having a good, or bad, run. Randomisation avoids this.	(1)	
(d)(i)	A <i>t</i> -test because the sample size is small.	E1	
(ii)	The assumption would be that the time taken for results to be returned is normally distributed.	E1	
		(2)	
		Total [13]	

Qu. No.	Solution											Mark	Notes
6	H_0 : median = 4.2 H_1 : median \neq 4.2											B1	Both $H_0: \eta = 4.2$ $H_1: \eta \neq 4.2$
	Diff $x - 4.2$ Rank	+ 0.8 5	- 1.0 7	+ 0.7 4	- 0.2 2	- 0.9 6	0	+ 1.9 9	+ 0.1 1	+ 0.6 3	+ 1.7 8	M1 A1	Condone mean Differences
	$W^+ = 5 + 4$	4 + 9	+ 1 +	3 + 8	0	R	<i>W</i> ⁻ =	: 7 + 2	2+6			M1	Attempt at summing ranks For A1, FT their
	= 30						=	15				A1	differences provided M1M1 awarded.
											M1A0M1A0 if rank of 1 assigned to diff = 0		
	Upper C\	/ = 43	OR	Lov	wer C	V = 2						B1	FT n = 10 if M1A0M1A0 awarded
	Оррого	7 – 40	OIX	LO	WOI 0	v – <u>2</u>							FT their TS and CV
	Because 30 < 43 OR 15 > 2, there is insufficient evidence to reject H_0 .										B1	cso	
	The test suggests that the zoologist should abandon his studies on this population.									E1			
												Total [8]	

Qu. No.	Solution	Mark	Notes
7(a)	$(X+Y) \sim N(180, 2\sigma^2)$	B1	si
	$P(180 - \sigma < X + Y < 180 + \sigma)$ $= P\left(\frac{180 - \sigma - 180}{\sqrt{2\sigma^2}} < Z < \frac{180 + \sigma - 180}{\sqrt{2\sigma^2}}\right)$	M1	
	$= P\left(\frac{-1}{\sqrt{2}} < Z < \frac{1}{\sqrt{2}}\right)$	M1	SC2 for only doing one side leading to
	= 0.52	A1	0.7602 or 0.76115 from tables
4.	4	(4)	
(b)	$E(T_1) = E(45 + \frac{1}{4}(3X - Y))$		
	$E(T_1) = 45 + \frac{3}{4}E(X) - \frac{1}{4}E(180 - X)$	M1	M1 for either first line.
	$E(T_1) = 45 + \frac{3}{4}\alpha - 45 + \frac{1}{4}\alpha$	M1	
	$E(T_1) = \alpha$	A1	Convincing
	T_1 is an unbiased estimator for $lpha$		
	$Var(T_1) = Var(45 + \frac{1}{4}(3X - Y))$		
	$Var(T_1) = \frac{9}{16}Var(X) + \frac{1}{16}Var(Y)$	M1	
	$Var(T_1) = \frac{5}{8}\sigma^2$	A1	
	$Var(T_1) < \sigma^2$	E1	FT their $Var(T_1) = k\sigma^2$
	$\therefore T_1$ is a better estimator than X	(6)	where $k < 1$
(c)(i)	$E(T_2) = E(\lambda X + (1 - \lambda)(180^\circ - Y))$		
	$E(T_2) = \lambda \alpha + (1 - \lambda)(180^\circ - \beta)$	M1	
	$E(T_2) = \lambda \alpha + (1 - \lambda)(\alpha)$		
	$E(T_2) = \lambda \alpha + \alpha - \lambda \alpha = \alpha$	A1	Convincing
(ii)	$Var(T_2) = Var(\lambda X + (1 - \lambda)(180^\circ - Y))$		
	$Var(T_2) = \lambda^2 Var(X) + (1 - \lambda)^2 Var(180^\circ - Y)$	M1	
	$Var(T_2) = \lambda^2 \sigma^2 + (1 - \lambda)^2 \sigma^2$	A1	oe ISW

Qu. No.	Solution	Mark	Notes
(iii)	$\frac{\mathrm{d}}{\mathrm{d}\lambda}\mathrm{Var}(T_2) = 2\lambda\sigma^2 - 2(1-\lambda)\sigma^2$	M1A1	M1 for attempt to differentiate with at least one decrease in power. For A1, FT $Var(T_2)$ for equivalent difficulty only. Use of $\frac{d}{d\lambda}Var(T_2) = 0$
	$\frac{d}{d\lambda} Var(T_2) = 0$ gives the best estimator	M1	Use of $\frac{1}{d\lambda} \operatorname{Var}(I_2) = 0$
		1411	
	$2\lambda\sigma^2 = 2(1-\lambda)\sigma^2$		
	$2\lambda = 2 - 2\lambda$		cao
	$\lambda = \frac{1}{2}$	A1	Accept alternative justification
	$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\mathrm{Var}(T_2)=4\sigma^2>0$, therefore minimum	E1	
		(9)	
		Total [19]	

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
FURTHER MATHEMATICS
UNIT 6 FURTHER MECHANICS B
1305U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 6 FURTHER MECHANICS B

SUMMER 2022 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	$a = v \frac{\mathrm{d}v}{\mathrm{d}x}$	M1	Used
	$\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{96}{(4x+9)^2}$	B1	
	$a = \frac{24}{4x+9} \times -24(4x+9)^{-2} \times 4$	A1	cao, isw
	$a = -\frac{2304}{(4x+9)^3}$	[3]	
(b)	(i) $-\frac{4}{3} = -\frac{2304}{(4x+9)^3}$	M1	FT their a from part (a)
	$4x + 9 = \sqrt[3]{1728}$	m1	Only FT $ax + b = \sqrt[3]{c}$ from the form $-\frac{4}{3} = \frac{k}{(4x+9)^3}$
	$x = \frac{3}{4}$	A1	cao
	(ii) $v = \frac{dx}{dt} = \frac{24}{4x+9}$		
	$\int (4x + 9) \mathrm{d}x = 24 \int \mathrm{d}t$	M1	Separation of variables
	$2x^2 + 9x = 24t \ (+C)$	A1	All correct
	When $t = 0, x = -2$ $(\Rightarrow C = -10)$	m1	Use of initial conditions
	$t = \frac{1}{24}(2x^2 + 9x + 10)$ or $t = \frac{1}{12}x^2 + \frac{3}{8}x + \frac{5}{12}$	A1	Correct expression only $(t =)$
	Substitute x from (i) into expression for t above $T = \frac{1}{24} \left(2 \left(\frac{3}{4} \right)^2 + 9 \left(\frac{3}{4} \right) + 10 \right)$	M1	Sub. their x into their t expression involving x and t
	$T = \frac{143}{192} = 0 \cdot 74(4791 \dots)$	A1	FT their <i>x</i> if used in the correct expression only
		[9]	
	Total for Question 1	12	

Q2	Solution	Mark	Notes
(a)	(i) $x = \sin(\pi t) + \sqrt{3}\cos(\pi t)$.		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = v = \pi \cos(\pi t) - \sqrt{3} \pi \sin(\pi t)$	B1	$\dot{x}, v = \cdots$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\pi^2 \sin(\pi t) - \sqrt{3} \pi^2 \cos(\pi t)$	M1	$\ddot{x}, \dot{v}, a = \cdots$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\pi^2 x$	A1	Convincing
	$\therefore \text{motion is SHM (with } \omega = \pi)$		
	Value of x at the centre of motion = 0	B1	
	(ii) Period = $\frac{2\pi}{\omega} = \frac{2\pi}{\pi} = 2$ (s)	B1	Convincing
	Amplitude, $a = \text{value of } x \text{ when } v = 0$ $\pi \cos(\pi t) - \sqrt{3} \pi \sin(\pi t) = 0$	M1	FT their v
	$\tan(\pi t) = \frac{1}{\sqrt{3}} \left(=\frac{\sqrt{3}}{3}\right)$		
	$\sin(\pi t) = \frac{1}{2}$ or $\cos(\pi t) = \frac{\sqrt{3}}{2}$ OR $x _{t=\frac{1}{6}}$	m1	Either trig. ratio OR sub. $t = \frac{1}{6}$ into x
	$a = \left(\frac{1}{2}\right) + \sqrt{3} \left(\frac{\sqrt{3}}{2}\right)$ $a = 2 (m)$	A1 [8]	cao $0 = 1$ $\frac{H = 2}{A = \sqrt{3}}$
(b)	Q has same period as $P\Rightarrow\omega=\pi$ amplitude is a		Condone repeated use of a
	$v^2 = \omega^2(\alpha^2 - x^2), \ \omega = \pi, \ x = \pm 2\sqrt{3}, \ v = \pm 2\pi$	M1	FT their $\omega = k\pi$
	$(2\pi)^2 = \pi^2 \left(a^2 - \left(2\sqrt{3} \right)^2 \right),$	A1	Correct equation
	a = 4 (m)	A1	cao
		[3]	
(c)	$x = \pm 4\sin(\pi t)$	M1	Allow $\pm a\cos(\pi t)$, a from part (b)
	$\sin(\pi t) + \sqrt{3}\cos(\pi t) = \pm 4\sin(\pi t)$	m1	$RHS = \pm a cos(\pi t)$
	$\tan(\pi t) = \frac{\sqrt{3}}{3}$ or $\tan(\pi t) = -\frac{\sqrt{3}}{5}$	A1	
	$t = \frac{1}{6} = 0.16(66 \dots)$ or $t = 0.89(385 \dots)$	A1	cao
		[4]	
	Total for Question 2	15	

Q3		Solution		Mark	Notes
(a)	$(\bar{y}=)$ 4a			B1	
				[1]	
(b)	Shape	Area/mass	Distance		
		$8a \times 6a$ $(= 48a^2)$	from AE		Candidates may legitimately include a ρ term for mass per unit area
	10 - 30	$\frac{8a \times 3a}{2}$ $(12a^2)$	$6a + \frac{1}{3}(3a) \ (= 7a)$	В3	B3 6 B2 any 4 or 5, B1 any 2 or 3 correct
	1 1	$\frac{\pi(3a)^2}{2}$ $\left(=\frac{9\pi a^2}{2}\right)$	$\frac{4(3a)}{3\pi} \left(= \frac{4a}{\pi} \right)$		Allow $-\frac{\pi(3a)^2}{2}$ or $-\frac{4(3a)}{3\pi}$
	Lamina	$a^2\left(60-\frac{9\pi}{2}\right)$	\bar{x}	B1	
	Moments ab			M1	Masses and moments consistent All terms, allow one sign error
	$a^2 \left(60 - \frac{9\pi}{2}\right) \bar{x} =$	$= (48a^{2})(3a) + (12a^{2}) \left(\frac{9\pi a^{2}}{2}\right) \left(\frac{4a}{\pi}\right)$)(7a)	A1	FT Correct for their table, provided semicircle is subtracted in lamina area and moment
	, – ,	144a + 84a - 18a		A1	$\bar{x} = \frac{420}{120 - 9\pi} a$ Convincing
	$\bar{x} = \frac{140}{40 - 3\pi}$	а		[7]	
(c)	(i) E	B 4a 4a 6a - 3	C B		
	If hanging in through cent	equilibrium, vertire of mass.	cal passes	M1	Correct triangle identified Condone missing <i>a</i> 's
	$\alpha = \tan^{-1} \left(\frac{6a}{6a - \bar{x}} \right)^{-1}$		α =	A1	Note that $6a - \bar{x} = \left(\frac{100 - 18\pi}{40 - 3\pi}\right) a$ $= (1 \cdot 4211 \dots) a$
	$\alpha = 19 \cdot 55(9)$		0 – 70 · 44(07)°	A1	cso, accept answers rounding to $\theta = 19^{\circ}$ or 20°

Moments about BD

$$M \times \left(6 - \frac{140}{40 - 3\pi}\right) a = kM \times 3a$$

$$k = \frac{1}{3} \left(6 - \frac{140}{40 - 3\pi} \right)$$

$$k = \frac{1}{3}(1 \cdot 42 \dots)$$

$$k = 0.47(37...)$$
 $= \frac{1}{3} \left(\frac{100 - 18\pi}{40 - 3\pi} \right)$

Alternative Solution

Shape	Area/mass	Distance from AE	Distance from BD	
Lamina	M	$ar{x}$	$6a - \bar{x}$	
Particle	kM	9a	3а	
New Lamina	(k+1)M	6a	0	

Moments about AE

$$(k+1)M \times 6a = M \times \bar{x} + kM \times 9a$$

$$k = \frac{1}{3} \left(6 - \frac{140}{40 - 3\pi} \right)$$

$$k = \frac{1}{3}(1 \cdot 42 \dots)$$

$$k = 0 \cdot 47(37 \dots)$$
 $= \frac{1}{3} \left(\frac{100 - 18\pi}{40 - 3\pi} \right)$

M1 Condone missing *a*'s

A1
$$M \times (6 - \bar{x})a = kM \times 3a$$

A1 cso, accept answers rounding to k = 0.47

[6]

Condone missing a's

cso, accept answers rounding to k = 0.47

Total for Question 3

14

Α1

M1

Α1

Q4	Solution	Mark	Notes
(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		length of rod $AB = l$ $\sin \theta = 0 \cdot 6$ $\cos \theta = 0 \cdot 8$
	Moments about A	M1	Dim. correct equation with 3 terms
	$75\sin\theta \times 0 \cdot 8 = 10 \times \frac{l}{2} + 25 \times l$	A1 A1	-1 each error
	$l = 1 \cdot 2 (m)$	A1	cao
		[4]	
(b)	Resolve vertically Y pointing downwards $Y + 75 \sin \theta = 10 + 25$ $(75 \sin \theta = Y + 10 + 25)$ $Y = -10$ (N) $Y = 10$	M1 A1	Dim. correct equation, no extra/missing forces
	Resolve horizontally $X = 75 \cos \theta$ $X = 60$ (N)	M1 A1	Dim. correct equation, no extra forces
	$R = \sqrt{60^2 + 10^2}$	m1	Provided both M's awarded,
	$R = 10\sqrt{37} = 60 \cdot 82(76 \dots) \text{ (N)}$	A1	FT their X and Y cao
	X = 60 $Y = 10$		
	$\tan \alpha = \frac{10}{60}$	m1	Provided both M's awarded, FT their X and Y
	$\alpha = 9 \cdot 46(23)^{\circ}$ below the horizontal	A1	cao
		[8]	
	Total for Question 4	12	

Q5	Solution	Mark	Notes
(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Before collision After collision $e = \frac{2}{5}$
	Con. of momentum (along line of centres) $4u_A + 2u_B = 4(-2) + 2(1)$ $(2u_A + u_B = -3)$ $4u_A \mathbf{i} + 2u_B \mathbf{i} = -6\mathbf{i}$	M1 A1	Attempted. Allow 1 sign error. $4(u_A \mathbf{i} - 5\mathbf{j}) + 2(u_B \mathbf{i} + 3\mathbf{j}) = 4(-2\mathbf{i} - 5\mathbf{j}) + 2(\mathbf{i} + 3\mathbf{j})$ All correct, oe Condone i's, i.e.
	Restitution (along line of centres) $(1) - (-2) = -\frac{2}{5}(u_B - u_A)$	M1 A1	Attempted. Allow 1 sign error. All correct, condone i's,
	$(2u_A - 2u_B = 15)$ $4u_A \mathbf{i} + 2u_B \mathbf{i} = -6\mathbf{i}$ Solving equations	m1	$\frac{2}{5} = -\frac{12}{u_B - u_A} = \frac{12}{u_A - u_B}$ One variable eliminated
	$u_A = \frac{3}{2}$ $u_B = -6$ Velocities before collision		
	Sphere $A = \frac{3}{2}i - 5j$ (ms ⁻¹)	A1	cao
	Sphere $B = -6\mathbf{i} + 3\mathbf{j}$ (ms ⁻¹)	A1 [7]	cao
(b)	Wall is parallel to vector i since impulse only has a j component	B1 [1]	Parallel to vector i since No i component No momentum in i direction Perpendicular to wall
(c)	Impulse, $\mathbf{I} = \text{change in momentum}$ $32\mathbf{j} = 4\mathbf{v} - 4(-2\mathbf{i} - 5\mathbf{j})$	M1	Used, $32\mathbf{j} = -4\mathbf{v} + 4(-2\mathbf{i} - 5\mathbf{j})$ $32 = 4\mathbf{v} - 4(-5)$ Condone j 's on the above
	$\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}$ $\mathbf{speed} = \sqrt{2^2 + 3^2}$	A1	,
	$=\sqrt{13}$ (ms ⁻¹) or $= 3 \cdot 60(55)$	B1 [3]	FT their $\sqrt{13}$ derived from $\mathbf{v} = -2\mathbf{i} + a\mathbf{j}, \ a \neq 0$
(d)	Loss in KE = $\frac{1}{2}(4)(2^2 + 5^2) - \frac{1}{2}(4)(\sqrt{13}^2)$ OR Loss in KE = $\frac{1}{2}(4)(5^2) - \frac{1}{2}(4)(3^2)$	M1	Difference in KE, any order At least one v^2 correct
	Loss in KE = 32 (J)	A1 [2]	FT provided loss (in KE) >0
	Total for Question 5	13	

Q6	Solution	Mark	Notes
	A = 0.8 $V = 0.8$ $V =$		$AB = 2 \cdot 8 \text{ m}$
(a)	Let $AC = y$ $T_A = \frac{60(y - 0.8)}{0.8} \qquad (= 75y - 60)$	M1	Use of Hooke's Law over a state of the stat
	$T_B = \frac{30(2 \cdot 8 - 1 \cdot 2 - y)}{1 \cdot 2} \qquad (= 40 - 25y)$	A1	T_B or T_A correct
	In equilibrium, $T_A = T_B$	m1	
	$\frac{60(y-0.8)}{0.8} = \frac{30(2.8-1.2-y)}{1.2}$		
	75y - 60 = 40 - 25y		
	y = 1 (m)	A1	Convincing
		[4]	
(b)	$A = 0.8 \times 0.2 \times 0.6 \qquad l = 1.2$ $A = 60 \times 1.8 \times 1.8 \times x$ $B = 1.8 \times x$		$AB = 2 \cdot 8 \text{ m}$
	(i) Let x denote the displacement of P from C		
	$T_A = \frac{60(0.2+x)}{0.8} \qquad (= 15 + 75x)$	B1	either term, oe
	$T_B = \frac{30(0.6-x)}{1.2}$ (= 15 - 25x) Apply N2L to P,	M1	Dim. correct.
	$T_B - T_A = 4 \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$	A1	T_B , T_A opposing
	$\frac{30(0.6-x)}{1.2} - \frac{60(0.2+x)}{0.8} = 4 \frac{d^2x}{dt^2}$		
	$-100x = 4\frac{d^2x}{dt^2}$		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -25x$	A1	Allow for any defined x , e.g. $\frac{d^2x}{dt^2} = -25(x-1)$
	∴ SHM with $\omega = 5$ (with centre at C)	B1	$\frac{dt^2}{dt^2} = -25(x-1)$ Must come from $x - \omega^2 x$
	$Period = \frac{2\pi}{\omega} = \frac{2\pi}{5}$	B1	FT ω

(ii) Amplitude, $a = 1 \cdot 4 - 1 = 0 \cdot 4$ (m)	B1	
Using $x = \pm a \cos \omega t$ with $a = 0.4$, $\omega = 5$	M1	Allow $x = \pm a \sin(\omega t)$ FT a and ω
$-0 \cdot 2 = 0 \cdot 4 \cos 5t$	A1	FT for $-0 \cdot 2 = a \cos \omega t$
$t = \frac{2\pi}{15} = 0.418(879 \dots) $ (s)	A1	cao
	[10]	
Total for Question 6		

Q6	Alternative Solution	Mark	Notes
	$A = 0 \cdot 8 \qquad e \qquad l = 1 \cdot 2$ $A = 0 \cdot 8 \qquad e \qquad \lambda = 30 \qquad T_B$ $C \qquad B$		$AB = 2 \cdot 8 \text{ m}$
(a)	Let $e = \text{extension in } AP$ $T_A = \frac{60}{0.8}e \qquad (= 75e)$	M1	Use of Hooke's Law 60 dist 0-8 or 30 dist 1-2 Any algebraic distance/extension
	$T_B = \frac{30(0.8 - e)}{1.2}$ (= 20 - 25e)	A1	T_B or T_A correct
	In equilibrium, $T_A = T_B$	m1	
	$\frac{60}{0.8}e = \frac{30(0.8 - e)}{1.2}$		
	$75e = 20 - 25e \qquad \Rightarrow \qquad e = 0 \cdot 2$		
	AC = 0.8 + 0.2 = 1 (m)	A1	Convincing
		[4]	

Q6	Alternative Solution	Mark	Notes
(b)	$A \xrightarrow{l = 0 \cdot 8} 0 \cdot 2 < 0 \cdot 6 $		$AB = 2 \cdot 8 \text{ m}$
	 (i) Let x denote the displacement of P from the midpoint of AB A 		
	$T_A = \frac{60(1\cdot4 - 0\cdot8 - x)}{0\cdot8}$ $T_A = \frac{60(x - 0\cdot8)}{0\cdot8}$		$T_A = 45 - 75x$ or $75x - 60$
		B1	either term, oe
	$T_B = \frac{30(1\cdot4-1\cdot2+x)}{1\cdot2}$ $T_B = \frac{30(2\cdot8-1\cdot2-x)}{1\cdot2}$		$T_B = 5 + 25x$ or $40 - 25x$
	Apply N2L to P,	M1	Dim. correct. T_B, T_A opposing
	$4\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \begin{cases} T_A - T_B \\ T_B - T_A \end{cases}$	A1	TB, TA Opposing
	$4\frac{d^2x}{dt^2} = \begin{cases} \frac{60(1\cdot4 - 0\cdot8 - x)}{0\cdot8} - \frac{30(1\cdot4 - 1\cdot2 + x)}{1\cdot2} \\ \frac{30(2\cdot8 - 1\cdot2 - x)}{1\cdot2} - \frac{60(x - 0\cdot8)}{0\cdot8} \end{cases}$		
	$4\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \begin{cases} 40 - 100x\\ 100 - 100x \end{cases}$		
	$\frac{d^2x}{dt^2} = \begin{cases} -25(x-0\cdot 4) \\ -25(x-1) \end{cases}$	A1	
	: SHM with $\omega = 5$ (with centre at $x = 0.4$, i.e. C)	B1	
	Period = $\frac{2\pi}{\omega} = \frac{2\pi}{5}$ (with centre at $x = 1$, i.e. C)	B1	FT ω
	(ii) Amplitude, $a = 1 \cdot 4 - 1 = 0 \cdot 4$ (m)	B1	
	Using $x - 0 \cdot 4 = \pm a \cos \omega t$ with $a = 0 \cdot 4$, $\omega = 5$	M1	Allow $x = \pm a \sin(\omega t)$ FT a and ω
	$0 \cdot 6 - 0 \cdot 4 = -0 \cdot 4 \cos 5t$	A1	FT RHS with $x = 1 \cdot 4 - 0 \cdot 8$
	$t = \frac{2\pi}{15} = 0.418(879 \dots) $ (s)	A1	cao
	OR	/N/1)	
	Using $x - 1 = \pm a \cos \omega t$ with $a = 0.4$ $\omega = 5$	(M1)	
	$0 \cdot 8 = 1 + 0 \cdot 4 \cos 5t$	(A1)	
	$-0 \cdot 2 = 0 \cdot 4 \cos 5t$	(0.4)	
	$t = \frac{2\pi}{15} = 0.418(879 \dots) $ (s)	(A1)	
		[10]	
	Total for Question 6	14	

1305U60-1 WJEC GCE A Level Further Mathematics - Unit 6 Further Mechanics B MS S22/CB