GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 1 - FOUNDATION TIER 3310U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2020 MARK SCHEME

GCSE Mathematics Numeracy Unit 1: Foundation Tier	Mark	Comments
1(a) (i) an even chance	B1	
1(a) (ii) 18	B1	
1(a) (iii) 16	B1	
1(b) 8007	B1	
1(c) No and a suitable explanation given indicating that the length of a pool cannot be 25 miles long. Eg No because 25 miles is far too long for a swimming pool No because he means 25 metres for the length of a pool 'No, the pool cannot be 25 miles long' 'No because it's metres not miles' 'No because the pool is 25 metres not miles'	E1	Allow Eg 'No, the pool is not 25 miles long' 'No, because 1 length doesn't equal 25 miles' 'No because the length of a swimming poOl is not 25 miles' 'No because 25 miles would be far too big to swim' Do not accept 'No because we were not given the distance for a length' 'No because we don't know the length of a pool' 'No because there are 15 miles in a length.'
1(d) cylinder	B1	
1(e) (13:30) (13:55) 14:20 14:45 (15:10) 15:35	B2	Accept times given in 12 hour and/or 24 hour format Award B2 for all 3 times correct Award B1 for 1 or 2 times correct For B1, FT 'their 14:20' +25 minutes correctly evaluated provided both times lie between 13:55 and 15:10
2(a) 11	B1	
2(b) (size) 8	B1	
2(c) (size) 12	B1	
2(d) No and suitable reason given Eg 'No because you increase by 2 each time' 'No because 5 isn't double 3' 'No, the rule is $+2($ not $\times 2$)' ' No , because if you double the circles in size 2 you get 10 which isn't 7 circles in size 3 .' 'No because you just add on 2 to the number of circles before it.' 'No because you add the size number + size number +1 ' 'No because to get size 3 you add 3 and 4 '	E1	Allow 'No because size 1 is 3 , size 2 is 5 then size 3 is 7 so it isn't doubling' 'No because it goes up by 2 '

5(a) 35°	31	
5(b) 53° drawn $\left(\pm 2^{\circ}\right)$ in correct place 78° drawn ($\pm 2^{\circ}$) in correct place	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	If BO , BO but $53^{\circ}\left(\pm 2^{\circ}\right)$ and $78^{\circ}\left(\pm 2^{\circ}\right)$ swapped, award SC1
Triangle completed	B1	Award this B1 provided at least one previous B1 or SC1 awarded
Two sides measured correctly (9.5 cm and 11.7 cm)	B2	B1 for each line. Allow $\pm 2 \mathrm{~mm}$. (Range is: 9.3 cm to 9.7 cm and 11.5 cm to 11.9 cm) FT their completed triangle This may be implied by their final answers
95 (m) and 117 (m)	B1	(Range is 93 m to 97 m and 115 m to 117 m) FT 'their measurements' provided a triangle drawn If previous B2 is awarded B0 or B1 then FT for the final B1 for at least one of 'their measurements' $\times 10$ or at least one of 'their measurements rounded to the nearest whole number of $\mathrm{cms}^{\prime} \times 10$ eg for 8.4 cm award final B1 for 80 or 82 to 86 Note: the 2 answers given must correspond in size to the sides of the triangle.
6. (Cost of strawberries) $20-6.8(0)-1.5 \times 4$ (£) 7.2(0)	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	M1 for (Blueberries cost) 1.5×4 (=6) Award M2, A1 for appropriate sight of $(£) 7.2(0)$ irrespective of any further inappropriate working
$\begin{gathered} \text { (Mass of strawberries) }(20-6.8(0)-1.5 \times 4) \div 3.6 \\ \text { or } \\ 7.2(0) \div 3.6 \end{gathered}$ $2 \text { (kg) }$	M1	In FT allow sight of 14.2(0) as indication of 20-6.8(0) attempted Allow convincing appropriate repeated addition FT provided there has been an attempt at a subtraction of the cost of blueberries from $20-6.8(0)(=13.2(0))$, 20 or 6.8(0) and provided M1 previously awarded, e.g. - $(20-1.5 \times 4) \div 3.6$ - $(6.8(0)-1.5 \times 4) \div 3.6$ OR FT (20 - 6.8(0) - 'their cost of blueberries') $\div 3.6$ provided 'their cost of blueberries' $>(£) 4$ CAO. Must be from correct working If no marks, award SC1 for an answer of $3.6(6 \mathrm{~kg}$) or $3.67(\mathrm{~kg})$ or $3.7(\mathrm{~kg})$ (from $(20-6.80) \div 3.6$) An answer only of 2 kg is awarded all 5 marks (strictly provided no incorrect working seen - this is answer only). Any other answer only, such as ' 2 bags', is awarded no marks.

7(a) (Total of first year cost is purchase + insurance + food) $\quad 450+12 \times 18+7 \times 52$ $(450+216+364)$ (£) 1030	M2	Allow food cost of 365 or 366 (from $£ 1$ per day) M1 for any one of: - a sum of 2 or 3 of amounts including any two of $450,12 \times 18$ and 7×52 - $12 \times 18+7 \times \mathrm{n}$, where $\mathrm{n}=48$ to 51 inclusive - $450+7 \times n$, where $\mathrm{n}=48$ to 51 inclusive - sight of 216 and 364 or 365 or 366 Use of 365 days leads to $(450+216+365=£) 1031$ Use of 366 days leads to $(450+216+366=£) 1032$ A1 for sight of $450+216+364$ or sum using 365 or 366 days FT from M1 for possible A2 (summing all 3 costs) with use of food costs for 48 to 51 weeks inclusive: - 48 weeks leads to $(450+216+336=£) 1002$ - 49 weeks leads to $(450+216+343=£) 1009$ - 50 weeks leads to $(450+216+350=£) 1016$ - 51 weeks leads to $(450+216+357=£) 1023$ or A1 for sight of the sum of 3 appropriate amounts (as given above), with products correctly evaluated OR FT from M2 or M1 for A1 for their final answer from a correctly evaluated sum in which at least 2 of the 3 amounts are correct. Strict FT for adding their 3 amounts correctly or if they only have 2 amounts, adding their 2 amounts correctly
7(b)(i) $25 \div 2.5$ or $\quad 30 \div 2.5$ OR for sight of 2.5×10 or 2.5×12 10 (inches)	M1 A1 A1	Allow for sight of repeated addition, 10 or 12 lots of 2.5 to be added Either of the correct responses implies M1 If $\mathrm{M} 1, \mathrm{~A} 0, \mathrm{~A} 0$ also award SC 1 if 'their 12 ' - 'their 10 ' $=2$ Answer line takes precedence. An answer needs to be selected for A marks to be awarded, however if M1, A0, A0 awarded, also award SC1 for sight of $2.5 \times 10=25$ and $2.5 \times 12=30$
7(b)(ii) 6×2.2 or 8×2.2 13.2 (pounds) 17.6 (pounds)	M1 A1 A1	Either of the correct responses implies M1 If $\mathrm{M} 1, \mathrm{~A} 0, \mathrm{~A} 0$ also award SC 1 if 'their 17.6 ' - 'their 13.2 ' $=4.4$ Answer line takes precedence.
$\begin{array}{\|ll\|} \hline 8 . \\ & \\ (x=) & 110\left(\left(^{\circ}\right)\right. \\ (y=) & 115\left(^{\circ}\right) \\ (z=) & 73\left(^{\circ}\right) \end{array}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Mark answer space if completed, otherwise check diagram FT 'their $115\left({ }^{\circ}\right)$ ' $42\left({ }^{\circ}\right)$ correctly evaluated, i.e. check 'their y ' - 'their z ' $=42$
9.(a) 1	B1	
9.(b) 2	B1	

10(a) (Cost of flags $4 \times 40=$) $\quad 160(p)$	B1	Shown in pence, accept in $£$. However, if units are incorrect penalise - 1 once only, unless corrected in further work Mark final answers at each stage (then possible FT) Accept use of 'their derived number of flags' as 'their 48 (4×12) flags' FT their consistent number of flags for all marks, then penalise - 1 if 'their derived number of flags' $\neq 48$
(Cost of muffin cases) $(12 \times 4 \div 16) \times 22$ or 3×22 $\text { (=) } 66 \text { (p) }$	M1	
(Cost of ingredients) $(12 \times 4 \div 6) \times 25$ or 8×25 (=) $200(\mathrm{p})$	M1 A1	If previous M0, M0 award SC1 here for sight of any one of the following: - (number of packs of muffin cases) $12 \times 4 \div 16$ and (number of multiples of ingredients) $12 \times 4 \div 6$ - (number of packs of muffin cases =) 3 - (number of multiples of ingredients $=$) 8
(Money taken in selling $12 \times 4 \times 30=$) $\quad 1440$ (p)	B1	
$\begin{gathered} \text { (Profit) } 1440-160-66-200 \\ (=1440-4.26) \end{gathered}$	M1	FT the following: - 'their 160', provided from an attempt at 4×40, - 'their 1440', provided from an attempt at $12 \times 4 \times 30$, - 'their 66' and 'their 200' provided at least 1 M1 mark has previously been awarded
1014(p) or (£)10.14	A1	If units are given they must be correct
10(b) $\frac{400-80}{80}(\times 100)$ or equivalent $400 \text { (\%) }$		
11(a) Unambiguously stating or implying 'No' with a reason, e.g. 'all scattered' 'no relationship',	E1	If a satisfactory reason is given ignore any further spurious comments Allow, e.g. 'no pattern', 'no trend', 'no steady plotted points', 'you can't draw a line of best fit', 'no steady line', 'they are not in a line', 'random points', 'points all over the place', 'plots are everywhere', 'no link' Do not accept, e.g. 'no correlation' 'there were lots of birds in the garden when the wind speed was low and high', 'too many outliers', 'spread far apart'
11(b) 7 (birds)	B1	

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 2 - FOUNDATION TIER 3310U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2020 MARK SCHEME

2.(d) No and full explanation including appropriate calculation referring to $\mathrm{cm} \leftrightarrow \mathrm{mm}$ conversion e.g. " 55 cm by 44 cm by 25 cm are all within the required dimensions" " 560 mm by 450 mm by 250 mm , so Tomos's rucksack are all within the required dimensions" " 550 mm is less than 560 mm AND 440 mm is less than 450 mm " " 55 cm is less than 56 cm AND 44 cm is less than 45 cm "	E2	Allow E1 for partial explanation e.g.No and at least one correct conversion seen - E2 explanation with one conversion error - for sight of 55 cm by 44 cm by 25 cm - for sight of 560 mm by 450 mm by 250 mm - "the dimensions of Tomos's rucksack are all within the required dimensions" - "all Tomos's dimensions are less" - " 550 mm is less than 560 mm " - " 440 mm is less than 450 mm " - " 55 cm is less than 56 cm " - " 44 cm is less than 45 cm " Award E2 if Yes ticked and full explanation including appropriate calculation referring to $\mathrm{cm} \leftrightarrow \mathrm{mm}$ conversion and that Tomos that would not have to pay, otherwise E1 for Yes ticked but explanation clearly implying that the dimensions are within the requirements.
2.(e)	B1	
3. \checkmark Evidence of counting area Area in range $39-45\left(\mathrm{~cm}^{2}\right.$ or $\left.\mathrm{m}^{2}\right)$ $\text { Area } \div 5\left(\mathrm{~m}^{2}\right)$ Correct whole number of tins (Cost of tins =) number of tins $\times(£) 32.7(0)$ Correct answer	M1 A1 M1 A1 A	Look at diagram FT 'their area' $\div 5\left(\mathrm{~m}^{2}\right)$ Must be rounded up FT 'their area' $\div 5\left(\mathrm{~m}^{2}\right)$ rounded up to a whole number FT 'their derived number of tins' $\times(£) 32.7(0)$ FT only if whole numbers of tins $\times(£) 32.7(0)$ If no marks or only $1^{\text {st }} \mathrm{M} 1$ awarded, award SC1 for sight of unsupported 8 or 9 tins SC2 for 8 tins and ($£$) 261.6(0) OR 9 tins and (£) 294.3(0)

4(a)(i) $4 / 7 \times 4.97$ or $4.97-3 / 7 \times 4.97$					M1	Or equivalent (4.97-2.13). Allow, for M1 only, use of - $\quad 0.57 \times 4.97$ - $4.97-0.428 \times 4.97$ - 4.97-0.43 4.4 .97 Do not allow use of 0.6×4.97 or $4.97-0.42 \times 4.97$ CAO
$4(a) \text { (ii) } 2 \times 8.5(0) \times 0.74 \text { or } 2 \times 8.5(0)-2 \times 8.5(0) \times 0.26$ (£)12.58					$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or equivalent (17-4.42) If no marks, award SC1 for an answer of either - (£)6.29 (one flag bought) - (£)14.79 (only one of the 2 flags reduced by 26%) If no marks in (i) and (ii), award SC1 in (ii) for answers of ($£$)2.13 and ($£$) 4.42 respectively
$4(b) \quad \frac{1}{3}$					B1	
Bird Feast Cheep Feed Kind to birds	ent method e.g.	to find co $\begin{aligned} & 0 \div 12.55 \\ & \hline 0 \div 25 \\ & \hline 0 \div 12 \end{aligned}$	per kg or $\begin{aligned} & 12.55 \div 1 \\ & \hline 25 \div 32(. \\ & \hline 12 \div 15(. \end{aligned}$	uantity (.)20 00	M2	A valid method is comparison in pairs, when cheaper of first pair used in further comparison M1 for any 2 consistent calculations M0 for any 1 calculation shown Consistent place value and any multiple of these
Consistent accurate evaluation pence or $£$ per kg or quantity per $£$ or p, e.g.					A2	A1 for any 2 consistent evaluations
	$£(\mathrm{p}) / \mathrm{kg}$	£/25kg	kg/p	kg / $£$		ISW
Bird 1 Feast	1(.)29(08..)	32.27...	0.0077..	0.77...		Consistent place value and any multiple of these
Cheep Feed 	1(.)28	32	0.0078 ...	0.78...		Do not accept Bird Feast truncated to ($£ 11.30$ per kg unless (£)1.29(08...) seen previously
Kind to birds 1	$1(.) 3(0)$	32.50	$\begin{aligned} & 0.00769 \\ & \ldots \\ & \hline \end{aligned}$	0.769...		Allow 0.76 (kg / $£$) or 0.77 kg / $£$ for Kind to birds
Conclusion 'Cheep Feed'					E1	FT provided at least M1, A1 previously awarded for appropriate conclusion based on all 3 being considered
6(a)					B1	
6(b)			21		B1	
6(c) 24					B1	
6(d) $100 \times \frac{4}{34}$ or $100 \times 4 \div 34$$11.8 \text { (\%) }$					M2	M1 for 100 multiplied by a fraction with either the correct numerator, or the correct denominator, except M0 for $100 \times 4 \div 100$ OR M1 for sight of $\underline{4}$ or $4 \div 34$ $\overline{34}$ CAO. Must be correct to1 decimal place A1 for 11.7(...\%)

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& \text { 7(a)(i) Angle } 55^{\circ}\left(\pm 2^{\circ}\right) \text { or } 15.277 \ldots(\%)(\pm 0.55 \ldots \%) \\
& 1080 \times 55(\pm 4) \div 360 \text { or } 3 \times 55(\pm 4) \\
& \text { or } 1080 \times 15.277 \ldots(\pm 1.11 \ldots) \\
& 165 \text { (people) }
\end{aligned}
$$ \& B1
M1

A1 \& | Sight of 55 ignoring any incorrect units is B1 only, until used in a relevant calculation |
| :--- |
| FT for M1 only if the angle is out of tolerance but within $\pm 4^{\circ}$ or equivalent working with percentage $\pm 1.11 \ldots \%$ |
| Ignore incorrect units given |
| OR a whole number in the inclusive range 159 to 171 (people) only as FT from working with $55^{\circ} \pm 2^{\circ}$ or $15.277 . . \% \pm 0.55 . . \%$ |
| Do not FT beyond tolerance of $\pm 2^{\circ}$ or ± 0.55.. $\%$ |
| Check diagram for angles or percentages |

\hline | 7(a)(ii) Carrots $100^{\circ} \pm 2^{\circ}$ and Sprouts $35^{\circ} \pm 2^{\circ}$ |
| :--- |
| or $27.77 . . \% \pm 0.55 \%$ and $9.722 . . \% \pm 0.55 \%$ or appropriate sight of $65^{\circ}(\pm 4)$ $\begin{aligned} & 1080 \times 100(\pm 2) \div 360-1080 \times 35(\pm 2) \div 360 \\ & \text { or } 1080 \times 65(\pm 4) \div 360 \\ & \text { or } 3 \times 65(\pm 4) \\ & \text { or } 3 \times 100(\pm 2)-3 \times 35(\pm 2) \\ & \text { or } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \hline 100(\text { people) } \end{aligned}$ | \& B1

M1

A1 \& | Both angles within tolerance |
| :--- |
| FT $65(\pm 4) \times$ 'their number of people per degree' FT for M1 only if one angle is out of tolerance but this one angle is within $\pm 4^{\circ}$ or equivalent working with percentage $\pm 1.11 \ldots \%$ |
| OR a whole number in the inclusive range 183 to 207 (people) only as FT tolerance in angles or percentages |
| Check diagram for angles or percentages |

\hline $$
\begin{array}{lr}
\hline 7 \text { (b) } 420-420 \times 3 \div 14 \text { or } & 420 \times(14-3) \div 14 \\
(=420-90) & 330 \text { (people) } \\
330 \times 2 \div 3 & \\
& 220 \text { (people) }
\end{array}
$$ \& \[

$$
\begin{aligned}
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Allow use of $\times 0.21$ as indication of $3 \div 14$ |
| :--- |
| CAO |
| FT 'their derived 330 ', including use of 90 (FT use of 90 gives an answer of 60) Allow FT answer not being a whole number |

\hline | 7(b) Alternative method |
| :--- |
| (Fraction who preferred frozen peas) $\frac{11}{14} \times \frac{2}{3}$ |
| $\frac{22}{42}$ or equivalent |
| (Number who preferred frozen peas) $\frac{22}{42} \times 420$ |
| 220 (people) | \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 | \& | ISW |
| :--- |
| FT from incorrect cancelling of 22/42 for m1 only (AO) |

\hline | 8(a) Appropriate sight of ($€$) 6000 |
| :--- |
| (Tax at 15\%) 0.15×6000 (= €900) | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | Ignore £ for $€$ |
| :--- |
| If (a) is not attempted, accept calculations seen in (b) |

\hline | ```8(b) (Tax at 22%) 0.22 * 20000 or 0.22\times(30000-10000) or equivalent \\ (€) 4400 \\ Total tax due \\ (€) 5300``` |
| :--- | \& M2

A1

A1 \& | Ignore $£$ for $€$ |
| :--- |
| M1 for 30000-10000 (= €20000) |
| CAO, not FT |
| ISW |
| FT 900 + 'their 4400' provided M2 previously awarded |

\hline
\end{tabular}

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 1 - INTERMEDIATE TIER 3310U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2020 MARK SCHEME

2(a) (Total of first year cost is purchase + insurance + food) $\quad 450+12 \times 18+7 \times 52$ $(450+216+364)$ (£) 1030	M2	Allow food cost of 365 or 366 (from £1 per day) M1 for any one of: - a sum of 2 or 3 of amounts including any two of $450,12 \times 18$ and 7×52 - $12 \times 18+7 \times \mathrm{n}$, where $\mathrm{n}=48$ to 51 inclusive - $450+7 \times n$, where $n=48$ to 51 inclusive - sight of 216 and 364 or 365 or 366 Use of 365 days leads to $(450+216+365=£) 1031$ Use of 366 days leads to $(450+216+366=£) 1032$ A1 for sight of $450+216+364$ or sum using 365 or 366 days FT from M1 for possible A2 (summing all 3 costs) with use of food costs for 48 to 51 weeks inclusive: - 48 weeks leads to $(450+216+336=£) 1002$ - 49 weeks leads to $(450+216+343=£) 1009$ - 50 weeks leads to $(450+216+350=£) 1016$ - 51 weeks leads to $(450+216+357=£) 1023$ or A1 for sight of the sum of 3 appropriate amounts (as given above), with products correctly evaluated OR FT from M2 or M1 for A1 for their final answer from a correctly evaluated sum in which at least 2 of the 3 amounts are correct. Strict FT for adding their 3 amounts correctly or if they only have 2 amounts, adding their 2 amounts correctly
Organisation and communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W 1 , candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

$\begin{aligned} & \text { 2(b)(i) } 25 \div 2.5 \\ & \text { OR for sight of } 2.5 \times 10 \text { or } 20 \div 2.5 \\ & 10 \text { (inches) } \\ & \end{aligned}$	M1 A1 A1	Allow for sight of repeated addition, 10 or 12 lots of 2.5 to be added Either of the correct responses implies M1 If $\mathrm{M} 1, \mathrm{~A} 0, \mathrm{AO}$ also award SC 1 if 'their 12 ' - 'their 10 ' $=2$ Answer line takes precedence. An answer needs to be selected for A marks to be awarded, however if M1, A0, A0 awarded, also award SC1 for sight of $2.5 \times 10=25$ and $2.5 \times 12=30$
2(b)(ii) 6×2.2 or 8×2.2 13.2 (pounds) 17.6 (pounds)	M1 A1 A1	Either of the correct responses implies M1 If M1, A0, A0 also award SC1 if 'their 17.6 ' - 'their 13.2 ' $=4.4$ Answer line takes precedence.

3(a)(i) $070\left({ }^{\circ}\right) \pm 3\left({ }^{\circ}\right)$	B1	
3(a)(ii) Corwen	B2	B1 for Llangollen or Llanrhaeadr or Llanfyllin
3(b) 3.5 cm represents $3.5 \times 20000 \div 100 \mathrm{~m}$ or $3.5: 3 \cdot 5 \times 20000 \div 100$ or 3.5×200	M2	Award M1 for any of the following: - 1 cm represents 200 m - 3.5×20000 or 70000 - $3.5 \times$ 'their 20000 ' where 'their 20000 ' is from a place value error in conversion - a number with significant digit 7 , any other digits are all zeros CAO
4. $\begin{array}{lr} (x=) & 110\left({ }^{\circ}\right) \\ (y=) & 115\left({ }^{\circ}\right) \\ (z=) & 73\left({ }^{\circ}\right) \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Mark answer space if completed, otherwise check diagram FT 'their $115\left({ }^{\circ}\right)^{\prime}$ ' $-42\left({ }^{\circ}\right)$ correctly evaluated, i.e. check 'their y ' - 'their z ' $=42$
5(a) 1	B1	
5(b) 2	B1	
5(c) Unambiguously stating or implying 'No' with working, e.g. shows any of: - $34+8=42$ people with 1 or 2 attempts - the median is the $43^{\text {rd }}$ person	E1	Allow for sight of 42 or 42.5 or 43 with indication of 'No'
$6(\mathrm{a})$ (Cost of flags $4 \times 40=$) $\quad 160$ (p)	B1	Shown in pence, accept in $£$. However, if units are incorrect penalise - 1 once only, unless corrected in further work Mark final answers at each stage (then possible FT) Accept use of 'their derived number of flags' as 'their 48 (4×12) flags' FT their consistent number of flags for all marks, then penalise -1 if 'their derived number of flags' $\neq 48$
(Cost of muffin cases) $(12 \times 4 \div 16) \times 22$ or 3×22	M1	
(Cost of ingredients) $(12 \times 4 \div 6) \times 25$ or 8×25 (=) $200(\mathrm{p})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	If previous M0, M0 award SC1 here for sight of any one of the following: - (number of packs of muffin cases) $12 \times 4 \div 16$ and (number of multiples of ingredients) $12 \times 4 \div 6$ - (number of packs of muffin cases =) 3 - (number of multiples of ingredients $=$) 8
$\begin{gathered} \text { (Profit) } 1440-160-66-200 \\ (=1440-4.26) \end{gathered}$	B1 M1	FT the following: - 'their 160 ', provided from an attempt at 4×40, - 'their 1440 ', provided from an attempt at $12 \times 4 \times 30$, - 'their 66 ' and 'their 200' provided at least 1 M1 mark has previously been awarded
1014(p) or (£)10.14	A1	If units are given they must be correct

6 (b) $\frac{400-80}{80}(\times 100)$ or equivalent		
6(c) 78p	B1	
7(a)(i) Can't tell	B1	
7(a)(ii) Unambiguously stating or implying 'No' with a reason, e.g. 'shows negative correlation (this week)', 'likely to be similar to this week', 'more rain, less sunshine'	E1	Allow 'No' with, e.g. 'can't tell from this week', 'can't predict the weather (from last week)', 'can't know this' Do not accept, e.g. 'you can't have a positive correlation (both can't increase)'
7(b)(i) Unambiguously stating or implying 'No' with a reason, e.g. 'all scattered' 'no relationship',	E1	If a satisfactory reason is given ignore any further spurious comments Allow, e.g. 'no pattern', 'no trend', 'no steady plotted points', 'you can't draw a line of best fit', 'no steady line', 'they are not in a line', 'random points', 'points all over the place', 'plots are everywhere', 'no link' Do not accept, e.g. 'no correlation' 'there were lots of birds in the garden when the wind speed was low and high', 'too many outliers', 'spread far apart'
7(b)(ii) 7 (birds)	B1	
7(b)(iii)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	If no marks, award B1 if the results are reversed If no marks, award SC1 for answers of (Wednesday) 1.4 and (Friday) 5.6

$\begin{aligned} & 8(a) \quad 66.36 \div 6 \times 11 \text { or } 66.36 \div 6 \times(1+4+6) \\ & \text { or } 66.36 \div 6+4 \times 66.36 \div 6+66.36 \\ & (=11.06+\quad 44.24+66.36) \\ & \text { or equivalent } \end{aligned}$ (£) 121.66	M2	M1 for sight of $66.36 \div 6$ or 11.06, or for sight of '11.6(0)' (Note if $\times 10$ seen, check if there is indication if this was derived from $1+4+6$, if so accept for possible M2, if no evidence M0) CAO If no marks, award SC1 for an answer of ($£$) 182.49 (from $11 \times 66.36 \div 4$)
8(b) (First year increased charge) $24 \times 0.05+24$ or $24+24 \div 10 \div 2$ or equivalent (£) 25.2(0) (Second year increased charge) $25.2(0) \times 0.05+25.2(0)$ or $25.2(0)+25.2(0) \div 10 \div 2$ or equivalent (Increased charge after 2 years is) (£) 26.46	M1 A1 M1 A1	Accept 2520(p). Ignore units given FT 'their 25.2(0)' Accept 2646(p). If units are given they must be correct An answer of $(£) 26.4(0)$ (from $24+2 \times 1.20$) implies M1, A1, m0, A0 Sight of 24×1.05^{2} implies M2, also award A1 for 24×1.1025
8(c) $1 / 2 \times(2.2+1.8) \times$ height trapezium $+2.2 \times 2=6.8$ $2 \times$ height trapezium $=2.4$ or height trapezium $=1.2$ (Overall length =) 3.2 (m)	M2 A1 A1	M1 only if brackets omitted for sum of parallel sides in the overall calculation unless dealt with correctly in further working, OR M1 for $1 / 2 \times(2.2+1.8) \times$ height trapezium (brackets must be given or any 'missing brackets' implied by correct interpretation) FT 'their 1.2 ' +2 provided at least M1 previously awarded If no marks, award SC1 for area of the trapezium as $2.4\left(\mathrm{~m}^{2}\right)$ provided not from incorrect working, e.g. $6.8-(2.2+1.8+(0) \cdot 2+(0) \cdot 2)=2.4$ is SC0 $6.8-2.2 \times 2=2.4$ is SC1
8(c) Alternative method 1 : $(2+h t$ trap $) \times 2.2-2 \times 1 / 2 \times[(2.2-1.8) \div 2] \times h t$ trap $=6.8$ Height of trapezium $=1.2$ (Overall length =) 3.2 (m)	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	M1 for $1 / 2 \times[(2.2-1.8) \div 2] \times$ height trapezium or $2 \times 1 / 2 \times[(2.2-1.8) \div 2] \times$ height trapezium FT 'their 1.2' +2 provided at least M1 previously awarded
$\begin{aligned} & \begin{aligned} & \begin{aligned} 8(c) \\ 2 \times 1 / 2 \times(2+\text { overerall mengod }) \times \end{aligned} \\ &+[(2.2-1.8) \div 2] \\ &+ \text { overall length } \times 1.8=6.8 \end{aligned} \\ & \text { (Overall length }=) 3.2(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & M 2 \\ & \text { A2 } \end{aligned}$	M1 for $1 / 2 \times(2+$ overall length $) \times[(2.2-1.8) \div 2]$ or $2 \times 1 / 2 \times(2+o v e r a l l$ length $) \times[(2.2-1.8) \div 2]$ A1 for $2 \times$ Overall length $=6.4$ or correct simplified equation in terms of overall length
9. Unambiguous vertical line $5 \mathrm{~cm} \pm 2 \mathrm{~mm}$ from fence Angle bisector between house and fence $\pm 2^{\circ}$ Correct intersection, position of the tree	B1 B1 B1	Accept a horizontal line drawn from the fence, $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ away from the house FT from B1 for intersection of two straight lines provided both lines within tolerance $\pm 4 \mathrm{~mm}$ or $\pm 4^{\circ}$ Award B3 if the correct position is indicated provided not from incorrect working

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{10(a) (600 \(\div 8=75\)} \& \multirow[t]{3}{*}{B1
B1} \& \multirow[t]{3}{*}{\begin{tabular}{l}
May be seen amongst other inappropriate working, but not from 75 written in the table \\
FT 'their \(600 \div 8\) ' incorrectly evaluated
\end{tabular}} \\
\hline 1st \& 2nd \& 3rd \& 4th \& 5th \& 6th \& 7th \& 8th \& \& \\
\hline 25 \& 100 \& 175 \& 250 \& 325 \& 400 \& 475 \& 550 \& \& \\
\hline \multicolumn{8}{|l|}{10(b) States it is a random selection (from the first 75 pupils)} \& E1 \& \begin{tabular}{l}
Ignore any additional spurious statements \\
Allow for statement that implies 'random' selection, e.g. 'sticks a pin in (a printout of) the spreadsheet', 'the headteacher picked a random number', 'everyone had a fair chance of selection' \\
Do not accept, e.g. 'selects a random odd number' 'using a systematic sampling method' without further clarification,
\end{tabular} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
11(a) \((280-100+500) \div 50\) or \((280-100) \div 50+500 \div 50\) \\
(Sell each ticket for) \\
(£) 13.6(0)
\end{tabular}} \& M2 \& \begin{tabular}{l}
M1 for sight of any one of the following: \\
- \((280+500) \div 50 \quad(=£ 15.60)\) \\
- \((280-100) \div 50 \quad(=£ 3.60)\) \\
- \((-100+500) \div 50(=£ 8)\) \\
If units are given they must be correct \\
FT from M1 awarded \\
If no marks, award SC1 for either of the following: \\
- an answer of (\(£\)) 680 (from \(280-100+500\)) \\
- sight of \(500 \div 50\) correctly evaluated as \((£) 10\), allow if embedded within other calculation
\end{tabular} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
11(a) Alternative method:
\[
(1000-100) \div 250+500 \div 50
\] \\
or equivalent using any two points on the line, e.g.
\[
\begin{aligned}
\& (460-100) \div 100+500 \div 50 \\
\& (640-100) \div 150+500 \div 50
\end{aligned}
\]
\end{tabular}} \& M2

A1 \& | M1 for sight of any one of the following, or equivalent: |
| :--- |
| - $(1000-100) \div 250 \quad(=£ 3.60)$ |
| - (460-100) $\div 100 \quad(=£ 3.60)$ |
| - (640-100) $\div 150 \quad(=£ 3.60)$ |
| - 'an overall cost' - 100 |
| 'number of people for that overall cost' |
| - $1000 \div 250+500 \div 50 \quad(=£ 14)$ |
| - $460 \div 100+500 \div 50 \quad(=£ 14.60)$ |
| - $640 \div 150+500 \div 50 \quad(=£ 14.26$ or $£ 14.27)$ |
| - 'an overall cost' |
| 'number of people for that overall cost' ${ }^{+} \frac{500}{50}$ |
| If units are given they must be correct |
| FT from M1 awarded with answer rounded or truncated to a penny |
| If no marks, award SC1 for sight of $500 \div 50$ correctly evaluated as (£)10, allow if embedded within other calculation |

\hline
\end{tabular}

11(b) Considering a factor of $400(200,100$ or 50$)$ people or other suitable point, excluding $£ 500$ for charity, e.g.

- 'an overall cost' - 100
'number of people for that overall cost'
- (200 people) $(820-100) \div 200$,
- (100 people) $(460-100) \div 100$,
- (50 people) $(280-100) \div 50$
(Charity contribution) $500 \div 400$
(Total) (£) 4.85
11(b) Alternative method:
Considering total cost for
Considering total cost for 400 people, e.g.
$(400 \div 50) \times(280-100)+500$ or $8 \times 180+500$
or $(400 \div 100) \times(460-100)+500$ or $1440+500$
or $(400 \div 200) \times(820-100)+500$ or $2 \times 720+500$
or equivalent

$$
\div 400
$$

(£) 4.85

M1 \quad FT 'their 'an overall cost' - 100
'number of people for that overall cost'
i.e. 'their 3.60'
(= £3.60)

M1 (= $£ 1.25$) May be embedded within stages of calculation
If units are given they must be correct
If $\mathrm{M} 0, \mathrm{M} 1, \mathrm{~A} 0$ also award SC 1 for correct evaluation resulting from the omission of deducting $£ 100$, e.g.

- $(820 \div 200+1.25=£) 5.35$
- $(460 \div 100+1.25=£) 5.85$
- $(280 \div 50+1.25=£) 6.85$
- correctly evaluated
\qquad
'number of people for that overall cost'

If no marks (due to omission of $£ 100$), award
SC1 for $(8 \times 280+500) \div 400$
or SC2 for answer ($£$)6.85
or SC1 for $(4 \times 460+500) \div 400$
or SC2 for answer ($£$)5.85
or SC1 for $(2 \times 820+500) \div 400$
or SC2 for answer ($£$) 5.35
2 Allow $10^{6}\left(\mathrm{~mm}^{2}\right)$
B1 for any one of the following

- a calculated area $1000000\left(\mathrm{~mm}^{2}\right), 1000^{2}$, $\left(10^{3}\right)^{2}$ or equivalent
- 'their clearly written number' written correctly in standard form

M marks can be awarded in either order

$$
\div(0 .) 9(0) \text { or equivalent }
$$

$\div(0)$.75 or equivalent
$4000\left(\mathrm{~cm}^{2}\right)$

Sight of $2700 \div(0.9 \times 0.75)$ is awarded M2
A1 for $2700 \div 0.9=3000$ or $2700 \div 0.75=3600$ or for $2700 \div 0.675$ or for an appropriate FT division correctly evaluated
(Note: sight of $2700 \div 0.675$ is awarded M2 A1)

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 2 - INTERMEDIATE TIER 3310U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline \(3(\mathrm{a}) 4\) \& B1 \& \\
\hline 3(b) 21 \& B1 \& \\
\hline 3(c) 24 \& B1 \& \\
\hline 3(d) \(100 \times \frac{4}{34}\) or \(100 \times 4 \div 34\)
\[
11.8 \text { (\%) }
\] \& M2 \& \begin{tabular}{l}
M1 for 100 multiplied by a fraction with either the correct numerator, or the correct denominator, except MO for \(100 \times 4 \div 100\) \\
OR \\
M1 for sight of \(\frac{4}{34}\) or \(4 \div 34\) \\
CAO. Must be correct to1 decimal place \\
A1 for 11.7(...\%)
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 4(a)(i) Angle } 55^{\circ}\left(\pm 2^{\circ}\right) \text { or } 15.277 \ldots(\%)(\pm 0.55 \ldots \%) \\
\& 1080 \times 55(\pm 4) \div 360 \text { or } 3 \times 55(\pm 4) \\
\& \text { or } 1080 \times 15.277 \ldots(\pm 1.11 . .) \\
\& 165 \text { (people) }
\end{aligned}
\] \& B1
M1

A1 \& | Sight of 55 ignoring any incorrect units is B1 only, until used in a relevant calculation |
| :--- |
| FT for M1 only if the angle is out of tolerance but within $\pm 4^{\circ}$ or equivalent working with percentage $\pm 1.11 \ldots \%$ |
| Ignore incorrect units given |
| OR a whole number in the inclusive range 159 to 171 (people) only as FT from working with $55^{\circ} \pm 2^{\circ}$ or $15.277 . . \% \pm 0.55$.. \% |
| Do not FT beyond tolerance of $\pm 2^{\circ}$ or ± 0.55.. $\%$ |
| Check diagram for angles or percentages |

\hline | 4(a)(ii) Carrots $100^{\circ} \pm 2^{\circ}$ and Sprouts $35^{\circ} \pm 2^{\circ}$ |
| :--- |
| or $27.77 . . \% \pm 0.55 \%$ and $9.722 . . \% \pm 0.55 \%$ or appropriate sight of $65^{\circ}(\pm 4)$ $\begin{aligned} & 1080 \times 100(\pm 2) \div 360-1080 \times 35(\pm 2) \div 360, \\ & \text { or } 1080 \times 65(\pm 4) \div 360 \\ & \text { or } 3 \times 65(\pm 4) \\ & \text { or } 3 \times 100(\pm 2)-3 \times 35(\pm 2) \\ & \text { or } \quad \frac{(100(\pm 2)-35(\pm 2)) \times 1080}{360} \quad \text { or equivalent } \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$ | \& B1

M1

A1 \& | Both angles within tolerance |
| :--- |
| FT $65(\pm 4) \times$ 'their number of people per degree' FT for M1 only if one angle is out of tolerance but this one angle is within $\pm 4^{\circ}$ or equivalent working with percentage $\pm 1.11 \ldots \%$ |
| OR a whole number in the inclusive range 183 to 207 (people) only as FT tolerance in angles or percentages |
| Check diagram for angles or percentages |

\hline $$
\begin{array}{cc}
\hline 4 \text { (b) } 420-420 \times 3 \div 14 \text { or } & 420 \times(14-3) \div 14 \\
(=420-90) & 330 \text { (people) } \\
330 \times 2 \div 3 & \\
& 220 \text { (people) }
\end{array}
$$ \& M1

A1
M1

A1 \& | Allow use of $\times 0.21$ as indication of $3 \div 14$ |
| :--- |
| CAO |
| FT 'their derived 330 ', including use of 90 (FT use of 90 gives an answer of 60) Allow FT answer not being a whole number |

\hline | 4(b) Alternative method |
| :--- |
| (Fraction who preferred frozen peas) $\frac{11}{14} \times \frac{2}{3}$ |
| $\underline{22}$ or equivalent 42 |
| (Number who preferred frozen peas) $\frac{22}{42} \times 420$ |
| 220 (people) | \& M1

A1
m1

A1 \& | ISW |
| :--- |
| FT from incorrect cancelling of 22/42 for m1 only (AO) |

\hline
\end{tabular}

5. Total number of half-days 185,304 and 165 AND total number of pupils in Year 11 is 140 $\begin{array}{r} (238+185+304+270+165) \div 140 \text { or } 1162 \div 140 \\ 8.3 \text { (half-days) } \end{array}$	B1 M1 A1	FT ' their total of number of half days' \div 'their 140 ' Must be from a correct evaluated total for 'their entries for the number of half days' ISW
6(a) Appropriate sight of (€) 6000 (Tax at 15%) $0.15 \times 6000(=€ 900)$	B1 B1	Ignore $£$ for $€$ If (a) is not attempted, accept calculations seen in (b)
6(b) (Tax at 22\%) 0.22×20000 or $0.22 \times(30000-10000)$ or equivalent (€) 4400 Total tax due (€) 5300	M2 A1 A1	Ignore $£$ for $€$ M1 for $30000-10000$ (= €20000) CAO, not FT ISW FT 900 + 'their 4400' provided M2 previously awarded

9(a) $375 \div 1.6$ or $375 \times 5 \div 8$ or equivalent $234(.375 \mathrm{mph})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of $\div 1.6$ to $\div 1.613, \times 0.62$ to $\times 0.625$ Accept 234.4 (mph) Allow 234.3(... mph)
$\begin{array}{\|llll} \hline 9(\mathrm{~b}) & & & \\ 260.5 & \div 78 & & \\ & \div 155.552 & & \\ & & & \\ & & & \\ & & & 1.288 \text { (.... minutes) } \end{array}$	M1 M1 M1 A1	Method marks can be awarded in any order but the operation must be unique (not contradicted or repeated in the working) (Lap distance km) (Average lap time in hours) (Average lap time in minutes) Award M3 for sight of 260.5×60 78×155.552 CAO, accept rounded to 1.29 (minutes) or 1.3 (minutes) or 1 minute 17(.29...) seconds If no marks, award SC1 for equivalent operations used without 260.5 or with use of an incorrect 260.5, i.e. $78 \times \frac{60}{155.552}, 60 \div 78 \div 155.552$ or equivalent 78×155.552
9(c) 250	B1	
9(d) $\begin{array}{rrr} 250 & & \\ & \times 1.38 & \\ & & \div 12 \end{array}$ $17(.21 \ldots \text { million } €)$	M1 M1 M1 A1	Method marks can be awarded in any order but the operation must be unique (not contradicted or repeated in the working) Ignore place value errors in working with 'millions' for M marks (=£181.1594... million) (= €206.5217... million) Award M3 for sight of $\frac{250 \times 1.14}{1.38 \times 12}$ CAO. Allow final answer written in full. Allow 'millions' not written in the answer If no marks, award SC1 for equivalent operations used without 250 , i.e. 1.14 or 1.38×12 $1.14 \div 1.38 \div 12$ or equivalent

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
10. \\
(Greatest total length of pictures)
\[
\begin{gathered}
21.5+22.5+23.5+24.5+26.5 \\
\text { or } \quad 21+22+23+24+26+5 \times 0.5
\end{gathered}
\]
\[
(=) \quad 118.5(\mathrm{~cm})
\] \\
(Lower bound of shelf) 117.5(cm) \\
Difference of 1 cm stated or sight of \(118.5-117.5=1(\mathrm{~cm})\)
\end{tabular} \& M1
A1
B1
B1 \& \begin{tabular}{l}
Allow 0.4999(....) for 0.5 throughout, must clearly be a recurring 9 digit \\
Allow for sight of upper bounds of pictures: \\
\(21.5(\mathrm{~cm}), 22.5(\mathrm{~cm}), 23.5(\mathrm{~cm}), 24.5(\mathrm{~cm}), 26.5(\mathrm{~cm})\) \\
CAO from use of appropriate correct upper bounds and lower bound \\
Accept FT from clearly recurring 9s, as \\
\(0.9999999 \ldots\) is considered as equivalent to 1 \\
Accept 117.5-118.5 =-1(cm) \\
Allow 117.5-118.5 = 1 (cm difference) \\
If no marks, award SC1 for correct sum of 'their upper bounds' provided they are all increased but less than 0.5 cm greater than the measurements given in the question
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\text { 11(a) } 6550000000 \times 0.02
\] \\
or \(6550000000 \div 50\) \\
(£) \(1.31 \times 10^{8}\)
\end{tabular} \& M1
A2 \& \begin{tabular}{l}
A1 for (\(£\)) 131 million or \((£) 131000000\) or equivalent (e.g. \(131 \times 10^{6}\)) \\
If no marks, award SC1 for sight of (£) \(1.31 \times 10^{10}(\) from \(6550000000 \times 2)\)
\end{tabular} \\
\hline \begin{tabular}{l}
11(b) \(\quad \pi \times(25.9 \div 2)^{2} \times 2.03\) \\
Answer in the range \(1068\left(\mathrm{~mm}^{3}\right)\) to \(1070\left(\mathrm{~mm}^{3}\right)\)
\end{tabular} \& M2

A1 \& | Allow M1 for sight of any of the following: |
| :--- |
| - $\quad \pi \times 25.9^{2} \times 2.03$ |
| - 4275.8 to 4279 |
| - $1361.7(\ldots) \pi$ |
| - $\pi \times\left((25.9)^{2} \div 2\right) \times 2.03$ |
| - $2137.9(\ldots$... to 2139.(...) |
| - 680.8π to 680.9π |
| CAO. ISW |
| Accept an answer of 340.4(....) π |

\hline
\end{tabular}

$\begin{aligned} & \text { 12(a) } \tan x=\frac{3.9}{56.7} \\ & \begin{array}{r} (x=) \tan ^{-1} 3.9 / 56.7 \text { or }(x=) \tan ^{-1} 0.06878 \ldots \\ (x=) 3.93\left({ }^{\circ}\right) \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A2 } \end{aligned}$	A1 for ($\mathrm{x}=$) 3.9(3... ${ }^{\circ}$) from correct working An unsupported answer of 3.9 is $\mathrm{MO}, \mathrm{mO}, \mathrm{AO}$
	M1 m1 A2	A1 for ($x=$) 3.9(3... ${ }^{\circ}$) to 3.9(7... ${ }^{\circ}$) from correct working An unsupported answer of 3.9 is $\mathrm{MO}, \mathrm{mO}, \mathrm{AO}$
12(b) $56.7 \times 9.36 \div 3.9$ or 56.7×2.4 or equivalent $136(.08 \mathrm{~cm})$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Ignore place value errors due to change of units for M1 only If units are given they must be correct, accept answer in metres Allow answers from premature approximation in the range 136 (cm) to 136.1 (cm)
12(b) Alternative method (Height of poster =) $\left.\quad \tan \frac{9.36}{3.9(\ldots . .}{ }^{\circ}\right)$ Answer in the range $136(\mathrm{~cm})$ to $137.3(\mathrm{~cm})$	M1 A1	FTT from (a) MO for $\left.\tan 3.9\left(\ldots . .{ }^{\circ}\right)^{\circ}\right)=\underline{9.36}$ Height of poster If units are given they must be correct, accept answer in metres
13(a) 45 (cars)	B1	
13(b) Range correct (07:21 and 07:44) UQ and LQ correct $(07: 22.5$ and 07:35) Median correct $(07: 25)$	B1 B1 B1	Allow 07:21 to 07:22 and 07:44 to 07.45 Accept seen in working if not given on the box-andwhisker Accept seen in working if not given on the box-andwhisker Penalise -1 if the structure of the box-and-whisker plot is not correct, ignore if end vertical lines not shown for whiskers

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - NUMERACY UNIT 1 - HIGHER TIER 3310U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

 AUTUMN 2020 MARK SCHEME

2(c) $1 / 2 \times(2.2+1.8) \times$ height trapezium $+2.2 \times 2=6.8$ $2 \times$ height trapezium $=2.4$ or height trapezium $=1.2$ (Overall length $=$) $3.2(\mathrm{~m})$	M2 A1 A1	M1 only if brackets omitted for sum of parallel sides in the overall calculation unless dealt with correctly in further working, OR M1 for $1 / 2 \times(2.2+1.8) \times$ height trapezium (brackets must be given or any 'missing brackets' implied by correct interpretation) FT 'their 1.2 ' +2 provided at least M1 previously awarded If no marks, award SC1 for area of the trapezium as $2.4\left(\mathrm{~m}^{2}\right)$ provided not from incorrect working, e.g. $6.8-(2.2+1.8+(0) \cdot 2+(0) \cdot 2)=2.4$ is SC0 $6.8-2.2 \times 2=2.4$ is SC1
2(c) Alternative method 1 : $(2+h t$ trap $) \times 2.2-2 \times 1 / 2 \times[(2.2-1.8) \div 2] \times h t$ trap $=6.8$ Height of trapezium $=1.2$ (Overall length =) 3.2 (m)	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	M1 for $1 / 2 \times[(2.2-1.8) \div 2] \times$ height trapezium or $2 \times 1 / 2 \times[(2.2-1.8) \div 2] \times$ height trapezium FT 'their 1.2' +2 provided at least M1 previously awarded
2(c) Alternative method 2 : $\begin{aligned} 2 \times 1 / 2 \times(2+\text { overall length }) \times & {[(2.2-1.8) \div 2] } \\ & + \text { overall length } \times 1.8=6.8 \end{aligned}$ (Overall length =) 3.2 (m)	M2 A2	M1 for $1 / 2 \times(2+$ overall length $) \times[(2.2-1.8) \div 2]$ or $2 \times 1 / 2 \times(2+$ overall length $) \times[(2.2-1.8) \div 2]$ A1 for $2 \times$ Overall length $=6.4$ or correct simplified equation in terms of overall length
3. Unambiguous vertical line $5 \mathrm{~cm} \pm 2 \mathrm{~mm}$ from fence Angle bisector between house and fence $\pm 2^{\circ}$ Correct intersection, position of the tree	B1 B1 B1	Accept a horizontal line drawn from the fence, $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ away from the house FT from B1 for intersection of two straight lines provided both lines within tolerance $\pm 4 \mathrm{~mm}$ or $\pm 4^{\circ}$ Award B3 if the correct position is indicated provided not from incorrect working
$\text { 4(a) }(600 \div 8=) 75$1st 2nd 3rd 4th 5th 6th 7th 8th 25 100 175 250 325 400 475 550	B1 B1	May be seen amongst other inappropriate working, but not from 75 written in the table FT 'their $600 \div 8$ ' incorrectly evaluated
4(b) States it is a random selection (from the first 75 pupils)	E1	Ignore any additional spurious statements Allow for statement that implies 'random' selection, e.g. 'sticks a pin in (a printout of) the spreadsheet', 'the headteacher picked a random number', 'everyone had a fair chance of selection' Do not accept, e.g. 'selects a random odd number' 'using a systematic sampling method' without further clarification,

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& 5(\mathrm{a})(280-100+500) \div 50 \\
\& \text { or }(280-100) \div 50+500 \div 50
\end{aligned}
\] \\
(Sell each ticket for) \\
(£) 13.6(0)
\end{tabular} \& M2 \& \begin{tabular}{l}
M1 for sight of any one of the following: \\
- \((280+500) \div 50 \quad(=£ 15.60)\) \\
- \((280-100) \div 50 \quad(=£ 3.60)\) \\
- \((-100+500) \div 50(=£ 8)\) \\
If units are given they must be correct FT from M1 awarded \\
If no marks, award SC1 for either of the following: \\
- an answer of \((£) 680\) (from \(280-100+500\)) \\
- sight of \(500 \div 50\) correctly evaluated as (£) 10 , allow if embedded within other calculation
\end{tabular} \\
\hline \begin{tabular}{l}
5(a) Alternative method: \\
\((1000-100) \div 250+500 \div 50\) \\
or equivalent using any two points on the line, e.g.
\[
\begin{aligned}
\& (460-100) \div 100+500 \div 50 \\
\& (640-100) \div 150+500 \div 50
\end{aligned}
\] \\
(£) 13.6(0)
\end{tabular} \& M2

A1 \& | M1 for sight of any one of the following, or equivalent: |
| :--- |
| - $(1000-100) \div 250 \quad(=£ 3.60)$ |
| - (460-100) $\div 100 \quad(=£ 3.60)$ |
| - (640-100) $\div 150 \quad(=£ 3.60)$ |
| - 'an overall cost' - 100 |
| 'number of people for that overall cost' |
| - $1000 \div 250+500 \div 50 \quad(=£ 14)$ |
| - $460 \div 100+500 \div 50 \quad(=£ 14.60)$ |
| - $640 \div 150+500 \div 50 \quad(=£ 14.26$ or $£ 14.27)$ |
| - 'an overall cost' |
| 'number of people for that overall cost' |
| If units are given they must be correct |
| FT from M1 awarded with answer rounded or truncated to a penny |
| If no marks, award SC1 for sight of $500 \div 50$ correctly evaluated as $(£) 10$, allow if embedded within other calculation |

\hline
\end{tabular}

5(b) Considering a factor of 400 (200, 100 or 50) people or other suitable point, excluding $£ 500$ for charity, e.g.

- 'an overall cost' - 100
'number of people for that overall cost'
- (200 people) $(820-100) \div 200$,
- (100 people) $(460-100) \div 100$,
- (50 people) $(280-100) \div 50$
(Charity contribution) $500 \div 400$
(Total)
(£) 4.85

5(b) Alternative method:
Considering total cost for 400 people, e.g.
$(400 \div 50) \times(280-100)+500 \quad$ or $8 \times 180+500$
or $1440+500$
or $(400 \div 200) \times(820-100)+500$ or $2 \times 720+500$
or equivalent

$$
\div 400
$$

(£) 4.85
$\div 400$

M1 \quad FT 'their 'an overall cost' - 100
'number of people for that overall cost'
i.e. 'their 3.60'
(= £3.60)

M1 (= £ 1.25) May be embedded within stages of calculation
If units are given they must be correct
If M0, M1, A0 also award SC1 for correct evaluation
resulting from the omission of deducting $£ 100$, e.g.

- $(820 \div 200+1.25=£) 5.35$
- $(460 \div 100+1.25=£) 5.85$
- $\quad(280 \div 50+1.25=£) 6.85$
- correctly evaluated
'an overall cost' +1.25
'number of people for that overall cost'

1
A1
If units are given they must be correct
If no marks (due to omission of £100), award
SC1 for $(8 \times 280+500) \div 400$
or SC2 for answer (£)6.85
or SC1 for $(4 \times 460+500) \div 400$ or SC2 for answer (£)5.85
or SC1 for $(2 \times 820+500) \div 400$
or SC2 for answer (£)5.35
Allow $10^{6}\left(\mathrm{~mm}^{2}\right)$
B1 for any one of the following

- a calculated area $1000000\left(\mathrm{~mm}^{2}\right), 1000^{2}$, $\left(10^{3}\right)^{2}$ or equivalent
- 'their clearly written number' written correctly in standard form

M marks can be awarded in either order

Sight of $2700 \div(0.9 \times 0.75)$ is awarded M2
A1 for $2700 \div 0.9=3000$ or $2700 \div 0.75=3600$ or for $2700 \div 0.675$ or for an appropriate FT division correctly evaluated
(Note: sight of $2700 \div 0.675$ is awarded M2 A1)

7.		In all alternative methods for answering this question accept alternative working in cm , if place value error
(Area of cross-section) $6 \times 1 / 2 \times 30 \times(52 \div 2)$	M3	M2 for $1 / 2 \times 30 \times(52 \div 2)(=390)$ M1 for any use of $52 \div 2 \quad(=26)$ (May be embedded)
2340 (mm^{2})	A1	
(Volume of the box) $234000\left(\mathrm{~mm}^{3}\right)$ OR for a comparison $2340\left(\mathrm{~mm}^{2}\right)>2300\left(\mathrm{~mm}^{2}\right)$	A1	FT 'their 2340 ' $\times 100$ correctly evaluated provided at least M2 previously awarded
$\begin{aligned} & \text { 7. Alternative method (trapezia) } \\ & \text { (Area of cross-section) } 2 \times 1 / 2 \times(52 \div 2) \times(30+2 \times 30) \\ & 2340\left(\mathrm{~mm}^{2}\right) \end{aligned}$	M3 A1	$M 2$ for $1 / 2 \times(52 \div 2) \times(30+2 \times 30)(=1170)$ M1 for use of $52 \div 2 \quad(=26)$
(Volume of the box) $234000\left(\mathrm{~mm}^{3}\right)$ OR for a comparison $2340\left(\mathrm{~mm}^{2}\right)>2300\left(\mathrm{~mm}^{2}\right)$	A1	FT 'their 2340 ' $\times 100$ correctly evaluated provided at least M2 previously awarded
```7. Alternative method (1/2absinC) (Area of cross-section) }6\times1/2\times30\times30\times\frac{\sqrt{}{}3}{2 1350\sqrt{}{3}\mathrm{ or 2338(.2.. mm}\mp@subsup{)}{}{2})\mathrm{ or 2340(mm}\mp@subsup{}{(}{2}) (Volume of box) 233820 mm or 234000 (mm ) OR for a comparison 2338(.2 mm}\mp@subsup{)}{}{2})>2300(\mp@subsup{m}{}{2}```	M3   A1   A1	M2 for $1 / 2 \times 30 \times 30 \times \frac{\sqrt{ } 3}{2}$   M1 for $\left(6 \times 1 / 2 \times 30 \times 30 \times \sin 60^{\circ}\right.$   FT 'their 2340 ' $\times 100$ correctly evaluated provided at least M2 previously awarded
7. Alternative method (triangle area) (Area of triangle) $\quad 1 / 2 \times 30 \times(52 \div 2)$	M2	(= 390)
(Minimum area of triangle required) $2300 \div 6$ $383(.33 . .$.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
Comparison 390 > 383(.33...)	A1	

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& 8(\mathrm{a}) \\
& \begin{array}{r}
4 \times \frac{8}{10} \times \frac{9000}{2000} \quad \text { or } \\
\\
\\
=14.4 \quad \text { or equivalent } \\
\\
\\
=15 \text { (needed) }
\end{array}
\end{aligned}
$$ \& M2

A1

A1 \& | A table method altering all 3 in the same manner at the same time is M0 |
| :--- |
| M1 for correct use of 4 with either $8 / 10$ or $9000 / 2000$ |
| Must be from M2 |
| Allow sight of 14.(...) or 14 with a remainder May not be seen |
| FT provided at least M1 awarded, a second step attempted to find the number of bricklayers needed for 9000 bricks in 10 hours AND rounding up required |
| Accept an answer of 14 provided their assumption in (b) states that some bricklayers can work at a quicker rate than others | <br>

\hline Alternative method: $\frac{2000}{8 \times 4}$ (=62.5 (bricks per hour per bricklayer))

$$
2000 \div(8 \times 4) \times 10
$$

$$
=14.4 \quad \text { or equivalent }
$$

$$
=15 \text { (needed) }
$$ \& M1

m1
A1

A1 \& | Accept multiples of $2000 \div(8 \times 4) \times 10(=625)$ in order to reach 9000 |
| :--- |
| Must be from M2 |
| Allow sight of 14.(...) or 14 with a remainder |
| May not be seen |
| Or 14 bricklayers can lay 8750 bricks, or 15 bricklayers can lay 9375 bricks |
| FT provided at least M1 awarded, a second step attempted to find the number of bricklayers needed for 9000 bricks in 10 hours AND rounding required |
| Accept an answer of 14 provided their assumption in (b) states that some bricklayers can work at a quicker rate than others | <br>

\hline | 8(b) |
| :--- |
| Valid assumption e.g. |
| 'All bricklayers work at the same rate', or 'All bricklayers took no breaks (or took breaks as often as before)', or |
| 'The weather did not affect the work', or 'All the bricks are the same size', or 'All conditions remain the same', or 'Bricklayers work at the same constant rate' | \& E1 \& | Accept an assumption that some bricklayers can work at a quicker rate than others provided a final answer of 14 given in (a) |
| :--- |
| Do not accept an assumption based on the need to round 14.4 | <br>


\hline | 9(a) |
| :--- |
| e.g. $100 x=13.888 \ldots$ and $1000 x=138.888 \ldots$ |
| or equivalent AND an attempt to subtract both sides $\begin{array}{r} (x=) \frac{125}{900} \text { or } \frac{1375}{9900} \text { or } \frac{13875}{99900} \text { or equivalent } \\ (x=) \frac{5}{36} \end{array}$ | \& M1

A1

A1 \& | Accept e.g. $\frac{1.25}{9}$ |
| :--- |
| FT 'their 125/900' provided of equivalent difficulty | <br>

\hline
\end{tabular}

9(b)(i) Appropriate explanation e.g.   'It should be $4 / 5 \times 4 / 5$ ', or   'It should be $\times 0.8^{2}$, or   'Each year it would be valued at $4 / 5$ of the previous year's value', or   'Each year he should be taking $1 / 5$ off the value'	E1	Allow sight of correct calculation only Allow incorrect notation e.g. $9600 \times \frac{4^{2}}{5}$   Do not accept e.g.   'Because this calculates the amount lost'
9(b)(ii) $V=9600 \times 0 \cdot 8^{t} \text { or } \quad V=9600 \times(4 / 5)^{t}$   or equivalent	B3	Allow pound signs in their formula   B2 for $9600 \times 0.8^{t}$ or $9600 \times(4 / 5)^{t}$ or $V=9600 \times \frac{4^{t}}{5}$ or $V=\text { initial price } \times 0 \cdot 8^{t} \text { or } V=\text { initial price } \times(4 / 5)^{t}$   B1 for sight of $0 \cdot 8^{t}$ or $(4 / 5)^{t}$ or $9600 \times \frac{4}{5}$ or $V=(9600 \times 0 \cdot 8)^{t}$ or initial price $\times 0.8^{t}$ or initial price $\times(4 / 5)^{t}$ or $V=$ initial price $\times \frac{4^{t}}{5}$   If no marks awarded:   SC1 for $V=9600 \times 0 \cdot 2^{t}$ or $V=9600 \times(1 / 5)^{t}$ or   SC1 for $V=9600 \times a^{t}$, where $0.5<a<1$
	B1	
10(a) Uniform scale using intervals of 0.5	B2	B1 for sight of $15 \div 20$ OR   B1 for a correct first entry on their scale e.g. 0.5 on the first graduation OR   B1 for blank scale in (a) but evidence of the correct scale used in (b)   Note: a correct value with none incorrect can be awarded B2
10(b) $(15+) 10 \times 2+10 \times 2.5+20 \times 0.85+30 \times 0.1$ $15+20+25+17+3(=80)$	M1 A1	FT their uniform scale for a possible M1 only Working may be seen on the graph, including the use of every $2 \mathrm{~cm}^{2}$ represents 5 people   Allow M1 for the sum of all 5 products with any 2 correct (not including 15)   CAO   If no marks awarded, award SC1 for sight of (15), 20, 25, 17, 3
10(c)   (Upper quartile $=$ time for $75^{\text {th }}$ percentile $=$ ) $40(\mathrm{~min})$   (Lower quartile $=$ time for $25^{\text {th }}$ percentile) $\begin{gathered} 2 x=5 \\ x=2.5 \text { or } 5 / 2 \text { or }(20+) \frac{1 / 4}{} \times 10 \\ \\ \\ \quad \text { (Lower quartile }=) 22.5 \text { (minutes) } \end{gathered}$   (Estimate of IQR =) 17.5 (minutes)	B1   M1   A1   A1   B1	Working may be seen on the graph $\text { Or } \frac{5}{20} \times 10$   Note: $90 \div 4=22.5$ is MOAOA0   An unsupported lower quartile of 22.5 with an upper quartile of 67.5 is awarded BOMOAOAO   FT 'their 40' - 'their 22.5' correctly evaluated provided at least 1 mark previously awarded


10(d) 'No' AND a correct explanation   e.g.   'The smaller inter-quartile range on Saturday implies   the waiting times are more closely grouped (or less   dispersed) then on Tuesday, but tells us nothing   about the length of the waiting times on these two   days', or   'Inter-quartile range is not an average', or   'Inter-quartile range only gives a measure of the   spread of the data', or   'The difference in the medians would tell us if the   waiting times were quicker'		E1

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
11(b) \\
\(\frac{2}{3} \times \pi \times 2^{3}+\frac{1}{3} \times \pi \times 2^{2} \times h=10 \pi\) or equivalent \\
\(\frac{4 \pi h}{3}=10 \pi-\frac{16 \pi}{3}\) or equivalent
\[
\begin{align*}
\& (\mathrm{h}=) 3.5 \text { or } \frac{7}{2} \quad(\mathrm{~m}) \\
\& (\text { Height of buoy }=) 5.5 \text { or } \frac{11}{2} \tag{m}
\end{align*}
\]
\end{tabular} \& M2
m1

A1

A1 \& | M1 for summing 2 terms and equating to $10 \pi$, with 1 term being correct |
| :--- |
| For isolating the h term |
| FT from M1 |
| All terms may have been multiplied by 3 , or $\pi$ cancelled |
| CAO |
| FT for 'their h' +2 provided M1m1 or M2m1 awarded | <br>

\hline | Alternative method 1: $\frac{2}{3} \times \pi \times 2^{3}+\frac{1}{3} \times \pi \times 2^{2} \times(H-2)=10 \pi$ or equivalent $\begin{aligned} & \frac{16 \pi}{3}+\frac{4 \pi H}{3}-\frac{8 \pi}{3}=10 \pi \text { or equivalent } \\ & \frac{4 \pi H}{3}=10 \pi-\frac{16 \pi}{3}+\frac{8 \pi}{3} \text { or equivalent } \end{aligned}$ |
| :--- |
| (Height of buoy =) 5.5 or $\frac{11}{2}$ | \& M2

$m 1$
$m 1$

A1 \& | M1 for summing 2 terms and equating to $10 \pi$, with 1 term being correct |
| :--- |
| FT from M1 |
| For isolating the H term |
| FT from M1m1 |
| All terms may have been multiplied by 3 , or $\pi$ cancelled |
| CAO | <br>

\hline | Alternative method 2 : |
| :--- |
| $\frac{2}{3} \times \pi \times 2^{3}+\frac{1}{3} \times \pi \times 2^{2} \times(H-2)=10 \pi$ or equivalent |
| $\frac{4 \pi(H-2)}{3}=10 \pi-\frac{16 \pi}{3}$ or equivalent $\begin{aligned} & (H-2 \Rightarrow) 3.5 \text { or } \frac{7}{2} \\ & (\text { Height of buoy }=) 5.5 \text { or } \frac{11}{2} \quad(\mathrm{~m}) \end{aligned}$ | \& M2

m1

A1

A1 \& | M1 for summing 2 terms and equating to $10 \pi$, with 1 term being correct |
| :--- |
| For isolating the $(H-2)$ term |
| FT from M1 |
| All terms may have been multiplied by 3 , or $\boldsymbol{\pi}$ cancelled |
| CAO |
| FT for 'their h' +2 provided M1m1 or M2m1 awarded | <br>

\hline $$
\begin{aligned}
& 12(\mathrm{a}) \\
& (\text { Area }=) \frac{1}{2} \times 10 \times(0+8+2(3+4.6+6.4)) \\
& \text { OR } \quad \frac{1}{2} \times 10 \times(8+6+9.2+12.8) \\
&
\end{aligned}
$$ \& M2

A1 \& | Award M1 if only one value incorrect |
| :--- |
| FT from M1 | <br>

\hline Alternative method:

$$
\begin{aligned}
& \frac{(0+3)}{2} \times 10+\frac{(3+4.6)}{2} \times 10+\frac{(4.6+6.4)}{2} \times 10+ \\
& \frac{(6.4+8)}{2} \times 10 \\
& \quad[15+38+55+72]
\end{aligned}
$$ \& M2

A1 \& | M1 for the sum of these 4 areas with only 1 value (possibly repeated) incorrect |
| :--- |
| FT from M1 | <br>

\hline
\end{tabular}



## GCSE MARKING SCHEME

AUTUMN 2020

GCSE<br>MATHEMATICS - NUMERACY UNIT 2 - HIGHER TIER 3310U60-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCSE MATHEMATICS - NUMERACY

## AUTUMN 2020 MARK SCHEME

GCSE Mathematics Numeracy Unit 2: Higher Tier	Mark	Comments
1.		Sight of, for example, 3500 or 0.0405 are treated as MR-1 (from first accuracy mark) in addition to any place value error in 'their 3.4 million'
$\left(35000\right.$ acres $\sim$ ) $35000 \times 0.00405141 .75\left(\mathrm{~km}^{2}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow 141.8   May be implied by further working
(Food per $\mathrm{km}^{2}$ ) $3400000 \div 141.75$	M1	Allow 3.4 (million) $\div 141.75$   Allow place value error in 'their 3.4 million' FT 'their 141.75', provided derived from a calculation involving 35000 and 0.00405
Following correct working, answers in the range 23975 (tonnes) to 24000 (tonnes)	A1	(Actual answer is 23985.89... tonnes) Do not FT from place value error in 'their 3.4 million' FT for equivalent range, e.g. use of 141.8 gives 23977(. 433 tonnes)) so accept answers in the range 23977 to 24000 tonnes
1. Alternative method 1 : (tonnes / acre) $3400000 \div 35000$	M1	Allow 3.4 (million) $\div 35000$   Allow place value error in 'their 3.4 million'
97.1(428....)	A1	Do not FT from place value error in 'their 3.4 million' May be implied by further working
(per $\mathrm{km}^{2}$ ) 97.1(428....) $\div 0.00405$	M1	FT from place value error in 'their 3.4 million' FT 'their 97.1(428....)' provided derived from a calculation involving 3400000 and 35000
Following correct working, answers in the range 23975 (tonnes) to 24000 (tonnes)	A1	(Actual answer is 23985.89... tonnes) Note: Accuracy for place value error in 'their 3.4 million' must be penalised once only on first occurrence
1. Alternative method 2 :   $3400000 \div 0.00405$	M1	Allow 3.4 (million) $\div 0.00405$ Allow place value error in 'their 3.4 million'
839506172.8(...)	A1	Do not FT from place value error in 'their 3.4 million' May be implied by further working
839506172.8(...) $\div 35000$	M1	FT from place value error in 'their 3.4 million' FT 'their 839506172.8(....)' provided derived from a calculation involving 3400000 and 0.00405
Following correct working, answers in the range 23975 (tonnes) to 24000 (tonnes)	A1	(Actual answer is 23985.89... tonnes) Note: Accuracy for place value error in 'their 3.4 million' must be penalised once only on first occurrence


Organisation \& Communication   Writing	OC1	For OC1, candidates will be expected to:   - present their response in a structured way   - explain to the reader what they are doing at each   step of their response   - lay out their explanations and working in a way that is clear and logical   - write a conclusion that draws together their results and explains what their answer means   For W 1 , candidates will be expected to:   - show all their working   - make few, if any, errors in spelling, punctuation and grammar   - use correct mathematical form in their working   - use appropriate terminology, units, etc.
$\begin{aligned} & \text { 2. (Aged } 75 \text { or over who used internet) } \\ & (0.4 \times 286500=) \\ & \begin{array}{c} \text { (Population who used the internet) } \\ (0.85 \times 3150000=) \\ \frac{114600}{2677500} \quad(\times 100) \\ \\ \end{array} \quad 2677500 \\ & \end{aligned}$	B1   B1   M1   A2	May be implied in further working.   May be implied in further working.   FT provided both $0.4 \times 286500$ and $0.85 \times 3150000$ attempted   Must be correct to 2 significant figures.   A1 for 4.28(0...\%) or from correct working 4(\%) or 4.2(\%)   If no marks, award SC1 for an answer of 9.1(\%) from $\frac{286500}{3150000} \times 100$   If B1 awarded, also award SC1 for 3.638...(\%) or 10.7...(\%) or with appropriate rounding or truncation OR SC2 for 3.6 (\%) or 11 (\%),   from: $\begin{aligned} & \frac{114600}{3150000} \times 100=3.638 \ldots(\%)=3.6(\%) \text { or } \\ & \frac{286500}{2677500} \times 100=10.7 \ldots(\%)=11(\%) \end{aligned}$
3(a) $375 \div 1.6$ or $375 \times 5 \div 8$ or equivalent 234(.375 mph)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of $\div 1.6$ to $\div 1.613, \times 0.62$ to $\times 0.625$   Accept 234.4 (mph)   Allow 234.3(...mph)
	M1   M1   M1   A1	Method marks can be awarded in any order but the operation must be unique (not contradicted or repeated in the working)   (Lap distance km)   (Average lap time in hours)   (Average lap time in minutes)   Award M3 for sight of $260.5 \times 60$ $78 \times 155.552$   CAO, accept rounded to 1.29 (minutes) or 1.3 (minutes) or 1 minute 17(.29...) seconds   If no marks, award SC1 for equivalent operations used without 260.5 or with use of an incorrect 260.5, i.e. $60 \quad, 60 \div 78 \div 155.552$ or equivalent $78 \times 155.552$
3(c) 250	B1	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
3(d)
\]
\[
\begin{aligned}
250 \& \\
\& \times 1.148 \div 12
\end{aligned}
\] \\
17(.21... million €)
\end{tabular} \& M1
M1
M1

A1 \& | Method marks can be awarded in any order but the operation must be unique (not contradicted or repeated in the working) |
| :--- |
| Ignore place value errors in working with 'millions' for M marks $(=£ 181.1594 \ldots \text { million })$ $\text { ( }=€ 206.5217 \ldots \text { million })$ |
| Award M3 for sight of $\frac{250 \times 1.14}{1.38 \times 12}$ |
| CAO. Allow final answer written in full. |
| Allow 'millions' not written in the answer |
| If no marks, award SC1 for equivalent operations used without 250 , i.e. $\frac{1.14}{}$ or $1.38 \times 12$ |
| $1.14 \div 1.38 \div 12$ or equivalent | <br>

\hline | 4. |
| :--- |
| (Greatest total length of pictures) $\begin{gathered} 21.5+22.5+23.5+24.5+26.5 \\ \text { or } \quad 21+22+23+24+26+5 \times 0.5 \end{gathered}$ $(=) \quad 118.5(\mathrm{~cm})$ |
| (Lower bound of shelf) $117.5(\mathrm{~cm})$ |
| Difference of 1 cm stated or sight of $118.5-117.5=1(\mathrm{~cm})$ | \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 | \& | Allow 0.4999 (....) for 0.5 throughout, must clearly be a recurring 9 digit |
| :--- |
| Allow for sight of upper bounds of pictures: 21.5(cm), 22.5(cm), 23.5(cm), 24.5(cm), 26.5(cm) |
| CAO from use of appropriate correct upper bounds and lower bound Accept FT from clearly recurring 9s, as $0.9999999 \ldots$ is considered as equivalent to 1 Accept 117.5-118.5 $=-1$ (cm) Allow 117.5-118.5 = 1(cm difference) |
| If no marks, award SC1 for correct sum of 'their upper bounds' provided they are all increased but less than 0.5 cm greater than the measurements given in the question | <br>


\hline | 5(a) $6550000000 \times 0.02$ or $6550000000 \div 50$ |
| :--- |
| (£) $1.31 \times 10^{8}$ | \& M1

A2 \& | A1 for (£) 131 million or $(£) 131000000$ or equivalent (e.g. $131 \times 10^{6}$ ) |
| :--- |
| If no marks, award SC1 for sight of |
| (£) $1.31 \times 10^{10}($ from $6550000000 \times 2)$ | <br>

\hline | $5(b) \quad \pi \times(25.9 \div 2)^{2} \times 2.03$ |
| :--- |
| Answer in the range $1068\left(\mathrm{~mm}^{3}\right)$ to $1070\left(\mathrm{~mm}^{3}\right)$ | \& M2

A1 \& | Allow M1 for sight of any of the following: |
| :--- |
| - $\quad \pi \times 25.9^{2} \times 2.03$ |
| - 4275.8 to 4279 |
| - 1361.7(...) $\pi$ |
| - $\quad \pi \times\left((25.9)^{2} \div 2\right) \times 2.03$ |
| - 2137.9(...) to 2139.(...) |
| - 680.8 т to $680.9 \pi$ |
| CAO. ISW |
| Accept an answer of 340.4(....) $\pi$ | <br>

\hline
\end{tabular}

$\begin{aligned} & \text { 6(a) } \tan x=\frac{3.9}{56.7} \\ & (x=) \tan ^{-1} 3.9 / 56.7 \text { or }(x=) \tan ^{-1} 0.06878 \ldots \\ & (x=) 3.93\left({ }^{\circ}\right) \end{aligned}$	M1   m1   A2	A1 for ( $\mathrm{x}=$ ) 3.9(3... ${ }^{\circ}$ ) from correct working An unsupported answer of 3.9 is $\mathrm{MO}, \mathrm{mO}$, A0
6(a) Alternative method   (slant height ${ }^{2}=3.9^{2}+56.7^{2}, s=\sqrt{ } 3230.1$,   leading to) slant height 56.8(33... m) and $\begin{gathered} \text { either } \sin x=\frac{3.9}{56.8(33 \ldots)} \text { or } \cos x=\frac{56.7}{56.8(33 \ldots)} \\ (x=) \sin ^{-1}(3.9 / 56.8(33 \ldots)) \text { or } \cos ^{-1}(56.7 / 56.8(33 \ldots)) \\ (x=) 3.93\left(^{\circ}\right) \end{gathered}$	M1   m1   A2	A1 for ( $x=$ ) 3.9(3... ${ }^{\circ}$ to 3.9(7... ${ }^{\circ}$ ) from correct working   An unsupported answer of 3.9 is $\mathrm{MO}, \mathrm{mO}, \mathrm{AO}$
6(b) $56.7 \times 9.36 \div 3.9$ or $56.7 \times 2.4$ or equivalent $136(.08 \mathrm{~cm})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Ignore place value errors due to change of units for M1 only If units are given they must be correct, accept answer in metres   Allow answers from premature approximation in the range 136 (cm) to 136.1 (cm)
6(b) Alternative method   (Height of poster $=$ ) $\left.\quad \tan \frac{9.36}{3.9(\ldots . . ~}{ }^{\circ}\right)$   Answer in the range 136 (cm) to 137.3 (cm)	M1 A1	FT from (a)   M0 for $\tan 3.9\left(\ldots . .{ }^{\circ}\right)=\underline{9.36}$   Height of poster   If units are given they must be correct, accept answer in metres
7(a) 45 (cars)	B1	
7(b) Range correct (07:21 and 07:44)   UQ and LQ correct $(07: 22.5$ and 07:35)   Median correct $(07: 25)$	B1 B1 B1	Allow 07:21 to 07:22 and 07:44 to 07.45   Accept seen in working if not given on the box-andwhisker   Accept seen in working if not given on the box-andwhisker   Penalise - 1 if the structure of the box-and-whisker plot is not correct, ignore if end vertical lines not shown for whiskers

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
8(a) \\
\((\) Amount in account \(=) 2000 \times(1+0.0438 / 365)^{30}\) OR \(2000 \times 1.00012^{30}\)
\[
=(£) 2007.21(\ldots)
\]
\end{tabular} \& M2 \& \begin{tabular}{l}
Allow use of 365.25 or 366 \\
Use of 365.25 leads to 1.0001199... \\
Use of 366 leads to \(1.00011967 \ldots\) \\
M1 for 1 error (not omission) e.g. \\
- a place value error e.g. 4.38 instead of 0.0438, or \\
M1 for \((1+0.0438 / 365)^{30}\) \\
Note: Use of 12 with a power of 1 , instead of 365 with a power of 30 , would not be considered as 1 error as it is not of equivalent difficulty, and is M0 \\
CAO \\
Use of 365.25 leads to ( \(£\) ) 2007.20(7...) \\
Use of 366 leads to ( \(£\) ) 2007.19(...) \\
If no marks awarded, \\
SC1 for answers of: \\
- (£)2007.41(...) from use of \(4.5 \%, 365\) or \\
- (£)2007.40(5...) from use of \(4.5 \%, 365.25\) or \\
- (£)2007.39(...) from use of \(4.5 \%, 366\)
\end{tabular} \\
\hline \[
\begin{aligned}
\& 8(\mathrm{~b}) \\
\& (\mathrm{AER}=)\left(1+\frac{0.045}{12}\right)^{12}-1 \\
\& =4.59(\%)
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A2 }
\end{aligned}
\] \& \begin{tabular}{l}
A1 for 0.0459(39...\%) or 4.59(39...)\%, or A1 for 0.046 or \(4.6 \%\) or \(5 \%\) from correct working \\
If no marks awarded, SC1 for 4.47 (\%) (from use of nominal annual rate of 4.38\%. Must be to 2d.p.)
\end{tabular} \\
\hline \begin{tabular}{l}
9(a) \\
(Width of rectangle/Base of triangle =) 1.3 (m) \\
(Sloping length \({ }^{2}=\) ) \(1.5^{2}+0.65^{2}\) \\
Sloping length \({ }^{2}=2.6725\) or \\
(Sloping length \(=\) ) \(\sqrt{ } 2.6725\) \\
(Sloping length \(=\) ) 1.63(...) (m) \\
(Cost of wire mesh \(=\) )
\[
\begin{array}{cc}
(2 \times 0.5 \times 1.3 \times 1.5 \& 2 \times 1.63(\ldots) \times 4.2) \\
1.95 \mathrm{~m}^{2} \& 13.69 \text { to } 13.73(\ldots) \mathrm{m}^{2} \\
\begin{array}{ll}
(£) 10.92 \& (£) 76.66(\ldots) \text { to }(£) 76.91
\end{array} \& (\times 5.6(0))
\end{array}
\]
\[
=(£) 87.58 \text { to }(£) 87.83
\]
\end{tabular} \& B1
M1
A1

A1

M2

A1 \& | May be implied by use of 0.65 in further work |
| :--- |
| FT 'their 1.3/2' |
| FT from M1 for the correctly evaluated square root of 'their 2.6725' provided their answer > 1.5 If trigonometry used to calculate the sloping length, M 1 for base angle $=\tan ^{-1}(1.5 /(1.3 \div 2)) \quad\left(=66.5\left(71 \ldots{ }^{\circ}\right)\right)$ or apex angle $=\tan ^{-1}((1.3 \div 2) / 1.5) \quad\left(=23.4\left(28 \ldots{ }^{\circ}\right)\right)$ m 1 for correct rearrangement of a sin or cos equation using their base or apex angle with 1.5 or $1.3 \div 2$ |
| A1 for (Sloping length $=$ ) 1.63(...) (m) |
| FT 'their 1.63(...)' provided Pythagoras or trigonometry attempted and 'their 1.3' |
| M1 for |
| - $0.5 \times 1.3 \times 1.5+1.63(\ldots) \times 4.2$ or |
| - $\ldots \ldots .+2 \times 1.63(\ldots) \times 4.2$ or |
| - $2 \times 1.63(\ldots) \times 4.2 \times 5.6(0)$ |
| OR |
| M1 for |
| - $2 \times 0.5 \times 1.3 \times 1.5+\ldots .$. or |
| - $2 \times 0.5 \times 1.3 \times 1.5 \times 5.6(0)$ |
| where Pythagoras or trigonometry may not have been attempted |
| FT from previous M2 only |
| Note: A sloping length of 1.6 (m) leads to an answer of (£)86.18(4) | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
9(b) \(\sqrt[3]{\frac{27}{8}}\) or \(\sqrt[3]{\frac{8}{27}}\) OR \(\left(\frac{27}{8}\right)^{2}\) or \(\left(\frac{8}{27}\right)^{2}\) or 3:2 or \(2: 3\) or equivalent \\
\(\left(\sqrt[3]{\frac{27}{8}}\right)^{2}\) OR \(\left(\sqrt[3]{\frac{8}{27}}\right)^{2}\) or \(3^{2}: 2^{2}\) or \(2^{2}: 3^{2}\) or equivalent \\
(Area of wire mesh \(=\) ) \(3 \times\left(\sqrt[3]{\frac{27}{8}}\right)^{2}\) or equivalent
\[
=6.75\left(\mathrm{~m}^{2}\right)
\]
\end{tabular} \& B1
B1

M1

A1 \& | $\begin{aligned} & (=1.5 \text { or } 0.666 \ldots \text { OR } 11.3(9 \ldots) \text { or } 0.08(7 \ldots)) \\ & (=2.25 \text { OR } 0.444 \ldots) \end{aligned}$ |
| :--- |
| Accept $6.8\left(\mathrm{~m}^{2}\right)$ | <br>

\hline | 10. (Remaining balance $=$ ) $18000(1+0.0025)^{60}-237.84\left(\frac{(1+0.0025)^{60}-1}{0.0025}\right)$ $=(£) 5533.52(7 \ldots) \quad \text { AND }$ |
| :--- |
| e.g. 'No, Dafydd would not have enough to pay off the Ioan' | \& M2

A2 \& | $(=(£) 20909.10(\ldots)-(£) 15375.57(\ldots))$ |
| :--- |
| Each expression may be seen in stages |
| M1 for a subtraction involving 1 correct expression, OR for a subtraction with only one consistently substituted incorrect value |
| CAO |
| Accept rounded answers e.g. (£)5533 or (£)5534 |
| A1 for ( $£$ ) $5533.52(7 \ldots$...) or rounded answers without a correct conclusion, OR |
| A1 for a correct calculation of $(£) 15375.57(\ldots)$ | <br>

\hline \[
$$
\begin{aligned}
& \text { 11(a) } \\
& \begin{aligned}
&\left(\text { Distance travelled =) } \frac{85}{360} \times 2 \times \pi \times 110\right. \\
&=163 \text { to } 163.21(\mathrm{~cm})
\end{aligned}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& Or $\frac{935 \pi}{18}$ or equivalent <br>

\hline full complete method using the sine rule to find the angle at the top of the triangle and then use of angles in a triangle

$$
=42 \cdot 6 \text { to } 42 \cdot 7(3 \ldots)\left({ }^{\circ}\right)
$$ \& M2

A1
M2

A1 \& | M1 for length ${ }^{2}=110^{2}+(110-16)^{2}-2 \times 110 \times(110-16) \times \cos 85\left({ }^{\circ}\right)$ |
| :--- |
| FT 'their derived 138(.324...)' |
| M1 for |
| - $\quad \underline{\sin (\text { angle })}=\underline{\sin 85\left({ }^{\circ}\right)}$ or equivalent or (110-16) 138(.324...) |
| - $\quad \sin ($ angle $)=\frac{\sin 85\left(^{\circ}\right)}{138(.324 \ldots)} \times(110-16)$ |
| OR |
| M1 for |
| - $(110-16)^{2}=110^{2}+138(.324 \ldots)^{2}$ $-2 \times 110 \times 138(.324 \ldots) \times \cos$ (angle) or |
| - $\cos ($ angle $)=\frac{110^{2}+138(.324 \ldots)^{2}-(110-16)^{2}}{2 \times 110 \times 138(.324 \ldots)}$ |
| OR M1 for finding the angle at the top of the triangle (52.2(6...) to $53\left({ }^{\circ}\right)$ ) |
| Accept $43\left(^{\circ}\right)$ from correct working | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
\text { 12(a) } \begin{array}{r}
\text { (Area of triangle } A O B=\text { ) } \frac{1}{2} \times 30.9^{2} \times \sin 150\left({ }^{\circ}\right) \\
\text { or equivalent full method } \\
=238.7(025) \text { or } 239\left(\mathrm{~cm}^{2}\right)
\end{array}
\end{array}
\] \& M1
A1 \& \\
\hline \begin{tabular}{l}
12(b) Adding two equal sectors to the area of the triangle
\[
\begin{aligned}
(\text { Area of } 2 \text { sectors }=) \& (2 \times) \frac{(180-150) / 2}{360} \times \pi \times 30.9^{2} \\
\& =249.8 \text { to } 250(.00 \ldots)\left(\mathrm{cm}^{2}\right)
\end{aligned}
\] \\
(Number of litres that can be added \(=\) )
\[
\begin{aligned}
\& (249.9(686 \ldots)+238.7(025)) \times 600 \quad(\div 1000) \\
\& \text { or } \quad(488.5 \text { to } 489) \times 600 \quad(\div 1000) \\
\& =293 \text { to } 293.4 \text { (litres) }
\end{aligned}
\]
\end{tabular} \& S1
M1
A1

M2

A2 \& | May be embedded in a volume calculation i.e. $\times 600$ |
| :--- |
| Or 31827 $\pi / 400\left(\mathrm{~cm}^{2}\right)$ |
| May be implied by 488.5 to 489 ( $\mathrm{cm}^{2}$ ) (total area) |
| May be implied by volume of 149800 to $150001\left(\mathrm{~cm}^{3}\right)$ |
| FT 'their 238.7(025)' and 'their 249.9(686...)' provided |
| M1 previously awarded |
| M1 (may be embedded within incorrect work) for |
| - (249.9(686...) + 238.7(025)) or |
| - $(249.9(686 \ldots)+\ldots . .) \times$. |
| OR |
| M1 (may be embedded within incorrect work) for |
| - $(\ldots \ldots . . . .+238.7(025)) \times 600$ |
| where previous M1 may not have been awarded |
| FT from M2 only |
| A1 for 293000 to $293400\left(\mathrm{~cm}^{3}\right)$ | <br>

\hline | Alternative method: |
| :--- |
| Area of semicircle subtract (area of the large sector area of triangle) |
| (Area of large sector $=\frac{150}{360} \times \pi \times 30.9^{2}$ or equivalent $=1249 \text { to } 1250\left(\mathrm{~cm}^{2}\right)$ |
| (Number of litres that can be added $=$ ) $\text { = } 293 \text { to } 293.4 \text { (litres) }$ | \& S1

M1
A1
M2

A2 \& | May be embedded in a volume calculation i.e. $\times 600$ |
| :--- |
| Or 31827 $\pi / 80$ ( $\mathrm{cm}^{2}$ ) |
| 749400 to $750000\left(\mathrm{~cm}^{3}\right)$ if volumes considered |
| FT 'their 238.7(025)' and 'their 1249.8(...)' provided |
| M1 previously awarded |
| M1 (may be embedded within incorrect work) for |
| - $\pi \times 30.9^{2} \div 2-(1249.8(\ldots)-238.7(025)$ ) or |
| - (1249.8(...) $-238.7(025)) \times 600$ or |
| - $\left(\pi \times 30.9^{2} \div 2-(1249.8(\ldots)-\ldots)\right) \times 600$ |
| OR |
| M1 (may be embedded within incorrect work) for |
| - $\left(\pi \times 30.9^{2} \div 2-(\ldots-238.7(025))\right) \times 600$ |
| where previous M1 may not have been awarded |
| FT from M2 only |
| A1 for 293000 to $293400\left(\mathrm{~cm}^{3}\right)$ | <br>

\hline
\end{tabular}

