GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 1 - FOUNDATION TIER 3310U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (NEW)

SUMMER 2019 MARK SCHEME

GCSE Mathematics-Numeracy Unit 1: Foundation Tier	Mark	Comments
1(a) Rectangle 4 cm by 3 cm drawn Rectangle drawn at least 3 cm from the house AND at least 1 cm from the hedge Rectangle drawn exactly 2 cm from the flower bed	B1 B1 B1	FT 'their rectangle' FT 'their rectangle'
$\begin{aligned} & 1(\mathrm{~b}) 12\left(\mathrm{~m}^{2}\right) \\ & 15 \times 12 \\ & (£) 180 \end{aligned}$	B1 M1 A1	FT 'their rectangle'. It must be a rectangle or square. This may be seen or implied in a calculation for costs. FT 'their 12' or their derived area. FT 'their 12 ' $\times 15$ correctly evaluated provided 'their 12^{\prime} is 6 or more.
1(c) cuboid	B1	
2(a) Level -3	B1	
2(b) (Level) -2	B1	Allow 2-
$\text { 2(c) }-1+10-5 \text { or }-1+5$ 4	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	May be seen in a diagram. Method may be seen in stages. If no marks award SC1 for appropriate sight of 9 (from -1 + 10)
3(a) $40 / 100 \times £ 3 \times 90$ or equivalent e.g. (£) $3 \times 90 \div 10 \times 4$ (£)108	M2	M1 for: $\begin{aligned} & 40 / 100 \times(£) 3(=1.2(0)) \mathrm{OR} \\ & 40 / 100 \times 90(=36) \mathrm{OR} \\ & (£) 3 \times 90(=270) \end{aligned}$ These may be implied in workings with other incorrect workings, $\text { e.g. } 90 \div 3(=30) \text { then } 40 / 100 \times(90 \div 3)(=12)$ ISW E.g. Ignore further working. $\text { e.g. } 108+270=378 \text { or } 270-108=162$
3(b) $90 \div 5 \times 8$ or equivalent e.g. 90×1.6 18×8 Or use of 10 miles is 16 km and 9×16 $144 \text { (km) }$	M1	Method may be seen in stages. Calculation that could lead to the correct answer if evaluated correctly.

5. (Snowdon)		
$6 \times 1000 / 1000$ or $6 \times 900 / 1000$ or $6 \times 950 / 1000$	M1	Working must be seen
or $6 \times 940 / 1000$ or $6 \times 945 / 1000$		
$6\left({ }^{\circ} \mathrm{C}\right)$ or $5.4\left({ }^{\circ} \mathrm{C}\right)$ or $5.7\left({ }^{\circ} \mathrm{C}\right)$	A1	ISW
or $5.64\left({ }^{\circ} \mathrm{C}\right)$ or $5.67\left({ }^{\circ} \mathrm{C}\right)$		Allow answers to calculations to be written as
		rounded or truncated values. Errors seen in
		If MO AO, award SC1 for unsupported answers in the range 5 to 6 inclusive.
(Kilimanjaro) $6 \times 4000 / 1000$ or $6 \times 5000 / 1000$ or $6 \times 4100 / 1000$	M1	Working must be seen
or $6 \times 4080 / 1000$ or $6 \times 4090 / 1000$ or $6 \times 4085 / 1000$		
$24\left({ }^{\circ} \mathrm{C}\right) \quad$ or $30\left({ }^{\circ} \mathrm{C}\right) \quad$ or $24.6\left({ }^{\circ} \mathrm{C}\right)$	A1	ISW
or $24.48\left({ }^{\circ} \mathrm{C}\right) \quad$ or $24.54\left({ }^{\circ} \mathrm{C}\right) \quad$ or $24.51\left({ }^{\circ} \mathrm{C}\right)$		Allow answers to calculations to be written as rounded or truncated values. Errors seen in calculations before rounding or truncating award AO
		If M0 A0, award SC1 for unsupported answers in the range 24 to 25 inclusive.
		Penalise -1 only on their first possible A1 for incorrect units. Ignore units not given
$\begin{array}{lll}(1 / 4 \mathrm{~kg} \text { strawberries costs) } & \text { (£) } 2.15\end{array}$	B1	
(Mr Thomas pays) 20-2.55	M1	(=£17.45)
OR (Cost of strawberries from £20) $20-8.60 \div 4$		($=20-2.15=£ 17.85$)
(Cost of $1 \frac{1}{2} \mathrm{~kg}$ raspberries) $20-2.55-8.60 \div 4$	m1	(=£17.45-£2.15 or £17.85-2.55)
(=£) 15.3(0)	A1	Sight of $(£) 15.3(0)$ implies all previous marks FT 'their $8.60 \div 4$ '
(Cost of 1 kg raspberries)	M1	FT 'their 15.3(0)'
$15.3(0) \div 3 \times 2$ or $15.3(0) \div 1.5$		
(=£) 10.2(0)	A1	

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{ll}
\hline 7(a)(i) \& \frac{3}{8}
\end{array}
\] \& B1 \& \\
\hline 7(a)(ii) 1:1 \& B1 \& \\
\hline \begin{tabular}{l}
7(b) Selects or unambiguously implies 'Shorter than Dieter's sunflower' \\
AND \\
- states or uses a suitable conversion, e.g. \\
' 90 cm is 36 inches' (as given), or \\
' 1 inch is \(2.5(4) \mathrm{cm}\) ', or equivalent \\
OR \\
- shows a calculation based on an appropriate conversion, e.g. sight of \(90 / 36\), or \(10 \div 4\), or similar \\
Stating or giving any of the following \\
- 80 cm as 30 inches to 32 inches inclusive \\
- 24 inches as 60 cm to 62 cm inclusive
\end{tabular} \& E1 \& \begin{tabular}{l}
Equivalents include: \\
- 12 inches as 30 cm \\
- 6 inches as 15 cm \\
- 9 cm as 3.6 inches \\
- 10 cm as 4 inches \\
B1 implies previous E1 provided 'Shorter than Dieter's sunflower' selected
\end{tabular} \\
\hline \begin{tabular}{l}
8(a)(i) (Aled's mum paid) (£) 220 OR \\
(Aled and Gareth pay a total of \(660-220)(£) 440\)
\[
\begin{aligned}
\&(660-220) \div(1+9) \text { or } 9 \times(660-220) \div(1+9) \\
\& \text { or } 44 \text { or } 9 \times 44 \\
\& \\
\& \text { (Aled paid) } \\
\& \text { (Gareth paid) }(£) 39 \\
\&(£) 39
\end{aligned}
\]
\end{tabular} \& B1
M1

A1

A1 \& | FT 660 - 'their derived 220' |
| :--- |
| FT $9 \times$ 'their 44 ' |
| FT 440 - 'their 44' provided M1 awarded (this allows If answers 44 and 396 are reversed, M1, A0, A1 to be awarded) |
| If $\mathrm{MO}, \mathrm{A} 0, \mathrm{~A} 0$ award SC 1 for any of the following |
| - answers that add to 'their 440 ' |
| - answers (£)66 and (£)594 |
| - answers (£)22 and (£)198 |

\hline | 8(a)(ii) Explanation, e.g. $220+44+396(=660),$ |
| :--- |
| 'add them all up', |
| 'check to see if the total is $(£) 660$ ', 'divide Gareth's amount by 9' | \& E1 \& | Depends on at least 1 mark awarded in 8(a)(i) Mark as appropriate to candidate's method in 8(a)(i), e.g. accept alternative method using $£ 44$ or $£ 396$ (if originally found from subtraction, sight of appropriate multiplication or division, or vice versa) |
| :--- |
| If values are used, FT provided the 3 values total (£)660 |
| If a total is given in a response it must be correct, (£)660 |
| Allow, e.g. 'multiply Aled's mother's amount by 3 ', |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
8(b) Sight any of any one of the following: \\
- \(\quad(21.13 \mathrm{~kg}-20 \mathrm{~kg}=) \quad 1130(\mathrm{~g})\) \\
- 21130 (g) \\
- consistent conversion of units g to kg , keeping 21.13 kg and 20 kg unchanged \\
Coat AND Jumper \\
(820 + 320)
\end{tabular} \& B1 \& \begin{tabular}{l}
Allow 1.13 (kg) provided it is interpreted correctly Accept evidence in working, do not award if working is not seen \\
If units are given they must be correct \\
Do not award B2 unless either previous B1 awarded or appropriate correct working shown Do not award B2 if incorrect working or no working seen \\
B1 for any of the following: \\
- \(1130-820=310\) \\
- Coat with sight of \(310(\mathrm{~g})\) left \\
- Unambiguous choice of \(820(\mathrm{~g})\) AND \(320(\mathrm{~g})\) to remove \\
- 'coat and jumper' without working shown, not to be awarded if incorrect working seen \\
Note: B1, B2 for unambiguous choice of Coat AND Jumper with for sight of \\
\(21130-820-320=19990\) or \(820+320=1140\) \\
OR \\
B1, B1 for sight of \(21130-820-320=19990\)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 8(c)(i) Appropriate calculation, e.g. } \\
\& 9 \times 11.4(0), \\
\& 34.2(0)+68.4(0), \\
\& 3 \times 34.2(0), \\
\& 45.6(0)+57(.00), \\
\& (45.6+5.7) \times 2
\end{aligned}
\] \\
102.6(0) (euros)
\end{tabular} \& M1

A1 \& Calculation that could lead to the correct answer if evaluated correctly

\hline \[
$$
\begin{aligned}
& \text { 8(c)(ii) Appropriate calculation, e.g. } \\
& 11.4(0) \div 2+22.8(0) \text {, } \\
& 57(.00) \div 2, \\
& (34.20+22.80) \div 2 \\
& \quad 28.5(0) \text { (euros) }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& Calculation that could lead to the correct answer if evaluated correctly

\hline 8(d)(i) Correctly completed frequency diagram \& B1 \& Bars of correct height (16 and 33) for the missing intervals

\hline 8(d)(ii) $\quad 1.12 \leq b<1.16$ \& B1 \&

\hline
\end{tabular}

9(a) 24 (miles per gallon)	B1	
9(b) 2.2 (litres)	B1	
$\begin{aligned} & \text { 9(c)(i) Sight of } \\ & 55,57,53,17,48 \\ & \text { (55+57+53+17+48) } \div 5 \\ & \quad(230 \div 5=) 46 \text { (miles per gallon) } \end{aligned}$	B1 M1 A1	FT 'method to sum 5 numbers' provided at least 3 are correct FT provided at least 4 correct values are used FT responses must be evaluated not left as improper fractions, however allow rounded or truncated final answers
9(c)(ii) Explanation of why it is not a suitable average, e.g. 'included the rogue value', 'gives a lower value', '17 appears to be an anomaly', 'one car goes far less than the others', 'because there is one really low value', 'mean is unduly affected by use of 17 '	E1	Allow, e.g. 'only considered 5 cars', 'not enough cars', 'because there are fewer cars', 'insufficient data', 'not considered all the cars with engines less than 1.5 litres', 'not considered all 6 (or 7) cars'
9(d) Straight line of best fit, following the trend with some points above and some below the line	B1	Allow slight adjustment down, considering the rogue value, the trend must be correct The line of best fit, shown or if extended, must not be connected to any corners of the graph paper Allow intention of a straight line
9(e) Unambiguous decision with a reason, e.g. 'Yes, as more cars with engines less than 2.5 litres', 'Yes, many cars with engine size less than 2.5 litres' 'Yes, 15 or 16 cars shown <2.5 litres', $' Y e s$, as only 10 cars (out of 26) with ≥ 2.5 litre engine', 'Yes, more data', "Yes, more readings' 'Yes, stronger correlation', 'Yes, (more) points are closer to the line of best fit', 'Yes, more cars', 'Don't know (or No), as there is one rogue value for a car with engine size <2.5 litres', ' $N o$, data not a large set',	E1	Allow, e.g. 'Yes, they are closer together', 'Yes, plots before 2.5 are close together' Yes, results are quite similar' 'Yes, they have a similar range in fuel economy', 'Yes, as only 10 cars (out of 26) with >2.5 litre engine' Do not accept, e.g. 'Yes, because before there is a lot of fuel economy', Do not accept contradiction between the choice of yes, no and don't know and their reason
10(a) $045\left({ }^{\circ}\right) \pm 2^{\circ}$	B1	Ignore any additional direction included, such as N (orth) E (ast) (or an incorrect direction) BO for $45^{\circ} \pm 2^{\circ}$ and/or N (orth) E (ast)
10(b) $202\left({ }^{\circ}\right) \pm 2^{\circ}$	B1	

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 2 - FOUNDATION TIER 3310U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U20-1)

SUMMER 2019 MARK SCHEME

GCSE Mathematics - Numeracy Unit 2 Foundation Tier	Mark	Comment
1(a) 128.9 (pence) $\times 40$ (litres) $=(£) 51.56$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A2 } \end{aligned}$	Allow incorrect place value Allow $£ 51.56$ p A1 for sight of digits 5156 with incorrect place value or units (e.g. $£ 5156$ or 5156 p or 51.56 p) Unsupported sight of digits 5156 implies M1A1 ISW Treat use of 127.9 as MR (-1 from A marks only)
Alternative method (128.9 (pence) $\div 100=$) (£) 1.289 (£)1.289 $\times 40$ (litres) (£) 51.56	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	BO for (£) 1.28 or (£) 1.29 Allow use of (£)1.28 $\times 40$ (litres) or ($£$) 1.29×40 (litres) Note: $(£) 1.28 \times 40$ (litres) $=(£) 51.2(0)$ (£) 1.29×40 (litres) $=(£) 51.6(0)$ Unsupported (£)51.2(0) or (£)51.6(0) implies B0M1A1 ISW
$1 \text { (b) } 4438 \div 35126.8 \text { (pence) }$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A2 } \end{aligned}$	Allow $44 \cdot 38 \div 35$ A1 for sight of the digits 1268 with incorrect place value or units (e.g.£126.8 or (£)1.268 or (£)1.27 or 127(p)) Unsupported sight of digits 1268 implies M1A1 ISW
2(a) 39000	B1	
2(b) nineteen thousand, two hundred and fifty-one	B2	B1 for identification of or use of correct value (e.g. sight of 19251, or words resembling 19251 with incorrect place value) Allow B1 for one hundred and fifty-two thousand, seven hundred and twenty-one
2(c) 26332	B1	If no number circled, accept 26332 in correct place in table
2(d) 146940	B1	If no number circled, accept 146940 in correct place in table
2(e) 1000000-562 016	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for intention of finding the difference. Allow $1 \times 10^{n}-562016$ (providing $n \geq 5$) CAO

3(a) \checkmark Evidence of counting area Area in range 64 to $71\left(\mathrm{~cm}^{2}\right.$ or $\left.\mathrm{m}^{2}\right)$ Area $\times(£) 12.50$ Answer in range (£)800(.00) - (£)887.5(0)	M1 A1 M1 A1	Look at diagram F.T 'their area' $\times(£) 12.50$ If units are given than they must be correct.
3(b) Circle with radius 3 cm centred at P OVERLAY	B2	Allow radius $\pm 2 \mathrm{~mm}$ B1 for circle of radius of 3 cm not centred at P $B 1$ for circle of diameter of 3 cm centred at P B1 for partially completed circle within the tolerance 'Freehand circle' B0 unless within the tolerance on the overlay
3(c) 6m	B1	
4. \checkmark $($ No of SEATED tickets $=) 0.35 \times 140$ $($ No of STANDING tickets $=140-49=) 91$ (Cost of SEATED tickets =) $49 \times(£) 84.5(0)$ OR (Cost of STANDING tickets $=$) $91 \times(£) 49.5(0)$ $($ Cost of tickets $=)(£) 4140.5(0)+(£) 4504.5(0)$ (£)8645(.00)	M1 A1 B1 M1 m1 A1	Or equivalent full method May be implied in later working FT 'their derived 49'. May be implied in later working FT 'their 49' FT 'their 91' M1 for sight of ($£$)4140.5(0) OR ($£$)4504.5(0) FT 'their $(£) 4140.5(0)$ ' + 'their $(£) 4504.5(0)$ '
Organisation and communication Writing	$\mathrm{OC} 1$ W1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc

5(a) $180\left({ }^{\circ}\right)-40\left({ }^{\circ}\right)-40\left({ }^{\circ}\right)$ $100\left({ }^{\circ}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept embedded answers
5(b) obtuse angle	B1	If incorrect, F.T their answer for angle b in 5(a)
5(c) Full explanation e.g. "(there should be 15 because) $1+2+3+4+5=15$ " "(there should be 15 because) (6) $+4+5$ " "you have to add an extra 9" "it's a triangular number"	E1	Allow "it's 15 because every row goes up one" Accept complete diagram of 15 balls E0 for correctly completed diagram followed by an explanation which contradicts the diagram
5(d) likely	B1	
$\begin{array}{r} 6 \text { (a)(i) } \frac{80 \pm 2}{360} \text { or } \frac{20}{90} \\ \\ \frac{2}{9} \end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow use of ‘ \div ’ for M1 FT only when simplifying possible, $78 / 360=13 / 60$ $81 / 360=9 / 40$ $82 / 360=41 / 180$
6(a)(ii) A correct numerator or denominator in any of the following proper fractions: $\begin{array}{r} \frac{3.5}{14.5} \text { or } \frac{14}{58} \text { or } \frac{7}{29} \\ \frac{7}{29} \end{array}$	M1 A1	Must be in a proper fraction Allow for sight of $3.5 \div 14.5$ or $14 \div 58$ or $7 \div 29$
6(b) Sight of $\frac{2}{14.5}(\times 100)$ or $\frac{8}{58}(\times 100)$ $13.79(\ldots \%)$ or $13.8(\%)$ or $14(\%)$	M1 A1	FT 'their 14.5 ' or 'their 58 ' from (a)(ii) provided $\neq 90$ If restarting, allow an error in a convincing sum to 'their total' for M1, but A0 Do not accept 13(\%) or 13.7(\%) (but unsupported this does imply M1)
$\begin{array}{llc} \text { 6(c) (Ffordd } & \text { Owain) } & 140\left({ }^{\circ}\right) \pm 2\left(^{\circ}\right) \\ \frac{140 \pm 2 \times 90}{360} & \text { or } & (140 \pm 2) \times 90 \div 360 \\ \text { or } & (140 \pm 2) \div 360 / 90 \end{array}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \end{aligned}$	May be seen by Saturday on the pie chart
35 (pairs)	A1	May be seen by Saturday on the pie chart Answer must be a whole number.
(Arthur Avenue 4×4 =) 16 (pairs of sunglasses)	B1	Accept 16 shown on the pictogram unambiguously for Saturday
(Difference) 19 (pairs of sunglasses)	B1	FT 'their Ffordd Owain total' - 'their Arthur Avenue total' for Saturday, provided 'their Ffordd Owain total' $\neq 90$ and $\neq 140 \pm 2$, and 'their Arthur Avenue total' $\neq 4$

7(a)
Method to compare, e.g.

- (Per kg price in SuperM) $1000 \times 27 \div 450$
- (1g cost of each, SuperM and FairMart)

$$
27 \div 450 \text { and } 57 \div 1000
$$

- (g per penny for SuperM and FairMart)

$$
450 \div 27 \text { and } 1000 \div 57
$$

- (450 g at Fairmart) $57 \times 450 \div 1000$
- (SuperM) $11 \times 450(\mathrm{~g})$ with 11×27 (p) AND (Fairmart) $5 \times 1000(\mathrm{~g})$ with $5 \times 57(\mathrm{p})$

Accurate comparison calculation, e.g.

- (Per kg price in SuperM) 60(p)
- (1g cost of each, SuperM and FairMart) $0.06(p)$ and $0.057(p)$
- (g per penny for SuperM and FairMart) 16.6(66... g per penny and 17.5(4... g per penny)
- (450 g at Fairmart) 25.65 (p) (<27p)
- (SuperM) 4950 (g) for $(£) 2.97$ AND (Fairmart) $5000(\mathrm{~g})$ for $(£) 2.85$

Conclusion, e.g.
'(Buying carrots from) FairMart (is better value for money.)

7 (b)	(Carrots)	2812.5
(Stock)	5	(litres)
	(Cream)	25

(Onions) 12 or 13

9(a) 3.25 + 4×2.4(0) (=) (£)12.85	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	If no marks, award SC1 for an answer of any of the following:
		Answer
		(£)10.45 $3.25+3 \times 2.40$
		(£)11.97(not for (£)11.96) $3.25+3(38 / 60) \times 2.40$
		$(£) 17.4(0)$ $3.25+4 \times 2.40$ and incorrect BIDMAS $(£) 2.6(0)$
		$(£) 22.6(0)$ $3.25+2.40 \times 4$ and incorrect BIDMAS
9(b) (Minimum time) 61 minutes	B3	B2 for an answer of 1 hour 1 minute OR B1 for sight of any one of the following - (8.05-3.25) $\div 2.4(0)$ - $3.25+2.4(0)+2.4(0) \quad(=8.05)$ - 4.8(0) $\div 2.4(0) \quad$ ($=2$ hours) - 2 hours OR an answer of a number of minutes >61 but ≤ 120

10(a)(i) Reason, e.g. 'find out if too far to go swimming', 'find out if there is a pool nearby', 'interesting to explore between distance people live from the pool and how often they use the pool' 'to find out how far people would travel to get to the sports centre', 'show relationship between how frequently they go swimming and distance travelled', 'see how far people travelled', 'to analyse the distance people travelled', 'to find out if people who live close by go more often', 'distance can affect participation'	E1	Allow, e.g. 'to see whether people close by use the gym more', 'shows how far people are willing travel', 'people who live close by go more often', 'distance affects participation' Do not accept, e.g. 'not a biased question', 'anyone can answer it', 'it would give a numerical answer', 'to see how people go to the sports centre', 'data can be grouped', 'data can be analysed'
10(a)(ii) Difficult to analyse because..., e.g. 'no categories', 'vague (question)', 'it is not specific', 'need time frame', 'it could be weeks, months, years' 'don't know what often means', 'no time period given', 'it is an open question', 'may not be about swimming in this sports centre'	E1	Do not accept, e.g. 'they may not remember', 'they don't know', 'they might not go swimming'
10(a)(iii) Appropriate question and at least 3 suitable categories with no gaps or overlaps, e.g. 'under 20 minutes, 20 minutes to one hour, more than one hour', ' 1 hour or less, more than 1 hour but less than 2 hours, 2 hours or more'	B2	Ignore gaps in continuous data provided not greater than 1 minute Allow 2 suitable groups with the third group as 'more' or similar Accept if options do not start at zero, provided the first option starts below 31 minutes Provided an appropriate question is given: Working in minutes allow: - B2 for $0-30,31-40,41-50$ - B1 for 0-30, 30-50, 50-70 Working in hours allow B1 for any of the following - $0-1,1-2,2-3$ - $0-1,2-3,4-5$ Award B1, if the B2 criteria would be met apart from having any one of the following errors: - First option starts between 31 minutes and 1 hour as lower bound, - There is a missing or inappropriate question - Poor or incorrect use of inequalities is seen
10(b)(i) $4\left({ }^{\circ} \mathrm{C}\right)$	B1	$(28-24=4)$ Do not accept from incorrect working, e.g. 29-25
10(b)(ii) 36 (minutes)	B1	Accept answers in the inclusive range 35 minutes to 37 minutes

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 1 - INTERMEDIATE TIER 3310U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U30-1)

SUMMER 2019 MARK SCHEME

GCSE Mathematics-Numeracy Unit 1: Intermediate Tier	Mark	Comments
1.		Penalise -1 only on their first possible A1 for incorrect units. Ignore units not given
$(1 / 4 \mathrm{~kg}$ strawberries costs) (£) 2.15	B1	
(Mr Thomas pays) 20-2.55	M1	(=£17.45)
(Cost of strawberries from £20) $20-8.60 \div 4$		(= $20-2.15=£ 17.85$)
(Cost of $11 / 2 \mathrm{~kg}$ raspberries) $20-2.55-8.60 \div 4$	m1	($=£ 17.45-£ 2.15$ or £17.85-2.55)
(=£) 15.3(0)	A1	Sight of (£)15.3(0) implies all previous marks FT 'their $8.60 \div 4$ '
(Cost of 1 kg raspberries) $15.3(0) \div 3 \times 2 \text { or } 15.3(0) \div 1.5$	M1	FT 'their 15.3(0)'
(=£) 10.2(0)	A1	
Organisation and communication	OC1	Consider implication of units not given in W mark For OC1, candidates will be expected to:
		- present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W 1 , candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

2(a)(i) $\frac{3}{8}$	B1	
2(a)(ii) 1:1	B1	
2(b) Selects or unambiguously implies 'Shorter than Dieter's sunflower' AND - states or uses a suitable conversion, e.g. ' 90 cm is 36 inches' (as given), or ' 1 inch is $2.5(4) \mathrm{cm}$ ', or equivalent OR - shows a calculation based on an appropriate conversion, e.g. sight of $90 / 36$, or $10 \div 4$, or similar Stating or giving any of the following - 80 cm as 30 inches to 32 inches inclusive - 24 inches as 60 cm to 62 cm inclusive	E1	Equivalents include: - 12 inches as 30 cm - 6 inches as 15 cm - 9 cm as 3.6 inches - 10 cm as 4 inches B1 implies previous E1 provided 'Shorter than Dieter's sunflower' selected

3(a)(i) (Aled's mum paid) (£) 220 OR (Aled and Gareth pay a total of $660-220)(£) 440$ $\begin{gathered} (660-220) \div(1+9) \text { or } 9 \times(660-220) \div(1+9) \\ \text { or } 94 \times 44 \\ \text { or } 9 \times 44 \\ \\ \\ \\ \\ \\ \\ \text { (Gled paid }) \\ \text { (Gareth paid) } \\ (£) 396 \end{gathered}$	B1 M1 A1 A1	FT 660 - 'their derived 220' FT $9 \times$ 'their 44' FT 440 - 'their 44' provided M1 awarded (this allows If answers 44 and 396 are reversed, M1, A0, A1 to be awarded) If $\mathrm{MO}, \mathrm{A} 0, \mathrm{~A} 0$ award SC 1 for any of the following - answers that add to 'their 440 ' - answers (£)66 and (£)594 - answers (£)22 and (£)198
3(a)(ii) Explanation, e.g. $220+44+396(=660)$, 'add them all up', 'check to see if the total is $(£) 660$ ', 'divide Gareth's amount by 9 '	E1	Depends on at least 1 mark awarded in 3(a)(i) Mark as appropriate to candidate's method in 3(a)(i), e.g. accept alternative method using $£ 44$ or $£ 396$ (if originally found from subtraction, sight of appropriate multiplication or division, or vice versa) If values are used, FT provided the 3 values total (£)660 If a total is given in a response it must be correct, (£)660 Allow, e.g. 'multiply Aled's mother's amount by 3 ',
3(b) Sight any of any one of the following: - $\quad(21.13 \mathrm{~kg}-20 \mathrm{~kg}=) \quad 1130(\mathrm{~g})$ - $21130(\mathrm{~g})$ - consistent conversion of units g to kg , keeping 21.13 kg and 20 kg unchanged Coat AND Jumper $(820+320)$	B1	Allow 1.13 (kg) provided it is interpreted correctly Accept evidence in working, do not award if working is not seen If units are given they must be correct Do not award B2 unless either previous B1 awarded or appropriate correct working shown Do not award B2 if incorrect working or no working seen B1 for any of the following: - $1130-820=310$ - Coat with sight of $310(\mathrm{~g})$ left - Unambiguous choice of $820(\mathrm{~g})$ AND $320(\mathrm{~g})$ to remove - 'coat and jumper' without working shown, not to be awarded if incorrect working seen Note: B1, B2 for unambiguous choice of Coat AND Jumper with for sight of $21130-820-320=19990$ or $820+320=1140$ OR B1, B1 for sight of $21130-820-320=19990$

$\begin{aligned} & \text { 3(c)(i) Appropriate calculation, e.g. } \\ & 9 \times 11.4(0), \\ & 34.2(0)+68.4(0), \\ & 3 \times 34.2(0), \\ & 45.6(0)+57(.00), \\ & (45.6+5.7) \times 2, \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$	M1 A1	Calculation that could lead to the correct answer if evaluated correctly
$\begin{aligned} & \text { 3(c)(ii) Appropriate calculation, e.g. } \\ & 11.4(0) \div 2+22.8(0) \text {, } \\ & 57(.00) \div 2, \\ & (34.20+22.80) \div 2 \\ & \quad 28.5(0) \text { (euros) } \end{aligned}$	M1 A1	Calculation that could lead to the correct answer if evaluated correctly
3(d)(i) Correctly completed frequency diagram	B1	Bars of correct height (16 and 33) for the missing intervals
3(d)(ii) $\quad 1.12 \leq b<1.16$	B1	
4(a) 24 (miles per gallon)	B1	
4(b) 2.2 (litres)	B1	
$\begin{aligned} & \text { 4(c)(i) Sight of } \\ & \text { 55, 57, 53, 17, } 48 \\ & \text { (55+57+53+17+48) } 5 \\ & \quad(230 \div 5=46 \text { (miles per gallon) } \end{aligned}$	B1 M1 A1	FT 'method to sum 5 numbers' provided at least 3 are correct FT provided at least 4 correct values are used FT responses must be evaluated not left as improper fractions, however allow rounded or truncated final answers
4(c)(ii) Explanation of why it is not a suitable average, e.g. 'included the rogue value', 'gives a lower value', '17 appears to be an anomaly', 'one car goes far less than the others', 'because there is one really low value', 'mean is unduly affected by use of 17 '	E1	Allow, e.g. 'only considered 5 cars', 'not enough cars', 'because there are fewer cars', 'insufficient data', 'not considered all the cars with engines less than 1.5 litres', 'not considered all 6 (or 7) cars'
4(d) Straight line of best fit, following the trend with some points above and some below the line	B1	Allow slight adjustment down, considering the rogue value, the trend must be correct The line of best fit, shown or if extended, must not be connected to any corners of the graph paper Allow intention of a straight line

4(e) Unambiguous decision with a reason, e.g. 'Yes, as more cars with engines less than 2.5 litres', 'Yes, many cars with engine size less than 2.5 litres' 'Yes, 15 or 16 cars shown <2.5 litres', 'Yes, as only 10 cars (out of 26) with ≥ 2.5 litre engine', 'Yes, more data', "Yes, more readings' 'Yes, stronger correlation', 'Yes, (more) points are closer to the line of best fit', 'Yes, more cars', 'Don't know (or No), as there is one rogue value for a car with engine size <2.5 litres', 'No, data not a large set',	E1	Allow, e.g. 'Yes, they are closer together', 'Yes, plots before 2.5 are close together' Yes, results are quite similar' 'Yes, they have a similar range in fuel economy', 'Yes, as only 10 cars (out of 26) with >2.5 litre engine' Do not accept, e.g. 'Yes, because before there is a lot of fuel economy', Do not accept contradiction between the choice of yes, no and don't know and their reason	
$\begin{aligned} \text { 5(a) (Area) } 1 / 2 \times 8 \times(10+12) \\ \text { or } 10 \times 8+1 / 2 \times 8 \times(12-10) \\ 88\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1		
$\begin{array}{ll}\text { (Cost) } 5 \times 1.5(0) \\ \\ & (£) 7.5(0)\end{array}$	M1 A1	Strict FT for 'their derived area' used with the table of charges A 'derived area' is a value obtained form any calculation which a candidate considers as 'their area' FT for 'their derived area' used to select the charge	
		$\begin{aligned} & \text { Area of label, to the } \\ & \text { nearest } \mathrm{cm}^{2} \end{aligned}$	Cost to print 500 labels
		Up to $80 \mathrm{~cm}^{2}$	(£) 5.75
		$81 \mathrm{~cm}^{2}$ to $85 \mathrm{~cm}^{2}$	(£) 6.25
		$86 \mathrm{~cm}^{2}$ to $89 \mathrm{~cm}^{2}$	(£) 7.5(0)
		$90 \mathrm{~cm}^{2}$ or more	(£) 8.75
5(b)(i) $\quad 375\left(\mathrm{~cm}^{2}\right)$	B1		

5(b)(ii) (Value sum dimensions) 40+25+30 (S = 95)	B1		
(Value area largest face) $30 \times 40 \quad(F=1200)$	B1		
For sight of any 1 of the following: - (Sum of values $S+F=$) 1295 - $1 / 5 \times(95+1200) \times 0()$. - $1 / 5 \times 95 \times 0()$. - $1 / 5 \times 1200 \times 0()$. Any correct substitution into the given formula, e.g. (Cost) $\quad 1 / 5 \times(95+1200) \times 0.02 \quad(=259 \times 0.02)$ or $1 / 5 \times 95 \times 0.02+1 / 5 \times 1200 \times 0.02 \quad(=0.38+4.8(0))$ $\text { (=) }(£ .18$	B1	Not a FT mark	
	M1	FT 'their derived S' + 'their derived F' ('derived' meaning not taken from the diagram) Allow intention of brackets, provided not contradicted For a single calculation or may be seen in stages	
	A1	Examples of possible FT answers:	
		Sum of values	Cost in $£$
		680	2.72
		740	2.96
		755	3.02
		820	3.28
		1080	4.32
		1095	4.38
		1160	4.64
		1280	5.12
		1360	5.44

6(a) Correct position indicated	B3	Allow $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$ throughout Irrespective of any indication of construction correct or otherwise If not indicated, allow for the correct and unambiguous intersection of the perpendicular bisector and the arc If not B3, award: B1 for an arc of radius 4 cm in the correct position AND B1 for perpendicular bisector between Block 1 and Block 2 drawn (accept bisector indicated as a short vertical indication at the midpoint between Block 1 and Block 2)
6(b) Answer in the range 102 to 110 (metres)	B1	
$\begin{array}{ll} \hline 7 \text { (a) }(\text { Cost to Sam) } 200 \times 25 & (=£ 5000) \\ \text { (Number of trees Sam expects to sell is) } \\ 200-0.22 \times 200 \text { or } 200 \times 0.78 \\ \quad(=) 156 \text { (trees) } \end{array}$ (Money from sales of trees is $40 \times 156=£$) 6240 (Expected profit is $£ 6240-£ 5000=$) (£) 1240	M1 M1 A1 B1 B1	Depends only on previous M1 FT the number of trees sold, i.e. $40 \times$ 'their 156 ' FT 'their (40× 'their 156 ')' - 5000 correctly evaluated
7(a) Alternative method: (Number of trees Sam expects to sell is) $200-0.22 \times 200 \text { or } 200 \times 0.78$ $\text { (}=\text {) } 156 \text { (trees) }$ (Expected profit) $156 \times(40-25)$ -25 (£) 1240	M1 A1 M2 A1	FT 'their 156' M1 for $156 \times(40-25)-$..... or CAO $\quad \ldots .-(200-156) \times 25)$
7(b) A suitable diagram with at least 3 hexagons (or 2 extra hexagons) shown to tessellate OR Sight of $3 \times 120^{\circ}=360^{\circ}$ or equivalent	E1	ISW A suitable diagram will involve 3 hexagons meeting at a point shown at least once, the 6 sides of the hexagons must be shown Allow if a correct diagram given with angles unlabelled or incorrectly labelled Do not accept if only the exterior angles (labelled correctly or incorrectly) of the given hexagon show, need to show further hexagons

8(a)(i) $045\left(^{\circ}\right.$) $\pm 2^{\circ}$	B1	Ignore any additional direction included, such as N (orth) E (ast) (or an incorrect direction) B0 for $45^{\circ} \pm 2^{\circ}$ and/or N (orth) E (ast)
8(a)(ii) $202\left(^{\circ}\right.$) $\pm 2^{\circ}$	B1	
8(b)(i) Sight of (Milford Haven to Ruabon) $90 \times 11 / 3$ OR (Ruabon to Swansea) $80 \times 1 \frac{11 / 4}{}$ (Milford Haven to Ruabon) 120 (miles) AND (Ruabon to Swansea) 100 (miles) (Total distance) 220 (miles)	M1	For the appropriate idea of speed \times time. Allow sight of - 90×80 (minutes) - 80×75 (minutes) - $\quad 90 \times 1.3(3)$ - $90 \times 1.2(0)$ - 80×1.15 CAO A1 for $90+30$ or $80+20$ or equivalent only provided there is no evidence of any misconception, e.g. $(80+35)$ FT provided at least M1, A1 previously awarded
8(b)(ii) (Total time is) 155 (minutes), or for sight of 80 (minutes) and 75 (minutes) (Total fuel needed would be) $\begin{gathered} 155 \times 0.4 \times 4.55, \text { or } \\ 80 \times 0.4 \times 4.55+75 \times 0.4 \times 4.55 \end{gathered}$ 282(.1) (litres)	B1	FT 'their number of minutes' provided both parts of the journey are considered and both parts take >60 minutes Use of ' $\div 2.5$ ' is equivalent to ' $\times 0.4$ ' (referred to as ' a product' in the details for M1 and A1) M1 for sight of - product of any two of $155,0.4$ and 4.55 seen, OR - product of any two of $80,0.4$ and 4.55 seen AND product of any two of $75,0.4$ and 4.55 seen AND intention to sum these two products CAO, accept 280 (litres) only if $282(.1)$ seen A1 for sight of any one of the following, provided at least M1 previously awarded: - 0.4×705.25 - 0.4×364 - 0.4×341.25 - 4.55×32 - 4.55×30 - 4.55×62 - 1.82×155 - 1.82×80 - 1.82×75 OR A1 for one of the two stages of evaluating products calculated accurately

9(a)(i) 2.5×10^{7}	B1	
9(a)(ii) $9600 \mathrm{~m}^{3}$	B1	
9(b) (Volume seen or implied) $59700000\left(\mathrm{~m}^{3}\right)$ or $60000000\left(\mathrm{~m}^{3}\right)$ OR (Surface area seen or implied, used as) 4.5(4) or 5 Average depth calculation, e.g. - $59700000 \div 4540000$ - $60000000 \div 4500000$ - $6000 \div 450$ - $600 \div 45$ - $60000000 \div 5000000$ - $60 \div 5$ OR sight of a trial and improvement method with suitable correct calculation(s): - $4.54 \times 12=54.48$ and $4.54 \times 13=59.02$ - $4.54 \times 13=59.02$ and $4.54 \times 14=63.56$ - single calculation (not $\times 13$) between $4.54 \times 12.1=54.934$ and $4.54 \times 13.1=59.474$ - $4.5 \times 12=54$ and $4.5 \times 13=58.5$ - $4.5 \times 13=58.5$ and $4.5 \times 14=63$ - single calculation between $4.5 \times 13.1=58.95$ and $4.5 \times 13.4=60.3$ - $5 \times 12=60$ Answer in the range $12(\mathrm{~m})$ to $13.5(\mathrm{~m})$	B1	Accept using index notation or standard form, e.g. $59.7 \times 10^{6}, 5.97 \times 10^{7}, 60 \times 10^{6}, 6 \times 10^{7}$ Accept exact or correctly rounded volume written in m^{3}, i.e. do not accept, e.g. 59000000 Ignore any units given FT e.g. 'their volume' $\div 4540000$ Accept written as a fraction Accept exact or rounded values provided estimates are reasonable Watch for compensating errors, which is MO and AO
10(a)(i) Maesystrad AND 46 (minutes)	B1	
10(a)(ii) Rhewlteg AND gives decision used unambiguously as median	B1	Accept decision based on median without the use of the term 'median', e.g. 'half of them took more than 39 minutes' Allow, e.g. - Rhewlteg as median is 38 (minutes) (from misreading the scale correct median is 39 minutes) - Rhewlteg as average is 39 (minutes) Do not accept contradictions, decision needs to be solely based on the median
10(a)(iii) Rhewlteg AND 25 (minutes)	B1	

10(a)(iv) 'Don't know' indicated or unambiguously implied AND reason, e.g. 'not told', 'it doesn't say (on the diagam)', 'doesn't give you the number of students/pupils', 'doesn't tell you how many were asked', 'it is about travel times (not number of students)', 'only gives the timings', 'it shows distribution of travel times, not number of students', 'only shows proportions of the students'	E1	Allow, e.g. 'doesn't give you the frequency (of students)', Do not accept, e.g. 'can't tell', 'not enough data', 'shows only median, range and measures of spread'
10(b)(i) 120 (students)	B1	
10(b)(ii) 23 (minutes)	B1	
11(a) Austria	B1	
11(b) United Kingdom	B1	
11(c) Argentina with appropriate working, e.g. Sight of 13 to 16 (for Argentina) AND 3 to 4 (for Canada)	B2	Accept unlabelled population density, provided not ambiguous or from incorrect working B1 for approximate population $/ \mathrm{km}^{2}$ (for Argentina) 13 to 16 OR (for Canada) 3 to 4 BO for unsupported answer 'Argentina' or if inappropriate working given, e.g. - 4×10000000 - 'Canada 34000 000, Argentina 40000 000'

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 2 - INTERMEDIATE TIER 3310U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U40-1)

SUMMER 2019 MARK SCHEME

GCSE Mathematics - Numeracy Unit 2: Intermediate Tier	Mark	Comments
$\begin{aligned} & \text { 1(a)(i) } \frac{80 \pm 2}{360} \text { or } \frac{20}{90} \\ & \frac{2}{9} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of ‘‘’ for M1 FT only when simplifying possible, $78 / 360=13 / 60$ $81 / 360=9 / 40$ $82 / 360=41 / 180$
1(a)(ii) A correct numerator or denominator in any of the following proper fractions: $\begin{array}{r} \frac{3.5}{14.5} \text { or } \frac{14}{58} \text { or } \frac{7}{29} \\ \frac{7}{29} \end{array}$	M1 A1	Must be in a proper fraction Allow for sight of $3.5 \div 14.5$ or $14 \div 58$ or $7 \div 29$
$\begin{aligned} & 1 \text { (b) Sight of } \frac{2}{14.5}(\times 100) \text { or } \frac{8}{58}(\times 100) \\ & 13.79(\ldots \%) \text { or } 13.8(\%) \text { or } 14(\%) \end{aligned}$	M1 A1	FT 'their 14.5 ' or 'their 58 ' from (a)(ii) provided $\neq 90$ If restarting, allow an error in a convincing sum to 'their total' for M1, but A0 Do not accept 13(\%) or 13.7(\%) (but unsupported this does imply M1)
$\begin{array}{lll} 1 \text { (c) (Ffordd Owain) } & 140\left({ }^{\circ}\right) \pm 2\left(^{\circ}\right) \\ 140 \pm 2 \times 90 & \text { or } & (140 \pm 2) \times 90 \div 360 \\ \frac{140}{360} & \text { or } & (140 \pm 2) \div 360 / 90 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	May be seen by Saturday on the pie chart
35 (pairs)	A1	May be seen by Saturday on the pie chart Answer must be a whole number.
(Arthur Avenue $4 \times 4=$) 16 (pairs of sunglasses)	B1	Accept 16 shown on the pictogram unambiguously for Saturday
(Difference) 19 (pairs of sunglasses)	B1	FT 'their Ffordd Owain total' - 'their Arthur Avenue total' for Saturday, provided 'their Ffordd Owain total' $\neq 90$ and $\neq 140 \pm 2$, and 'their Arthur Avenue total' $\neq 4$

2(a)

Method to compare, e.g.

- (Per kg price in SuperM) $1000 \times 27 \div 450$
- (1g cost of each, SuperM and FairMart)

$$
27 \div 450 \text { and } 57 \div 1000
$$

- (g per penny for SuperM and FairMart)

$$
450 \div 27 \text { and } 1000 \div 57
$$

- (450 g at Fairmart) $57 \times 450 \div 1000$
- (SuperM) $11 \times 450(\mathrm{~g})$ with $11 \times 27(\mathrm{p})$ AND (Fairmart) $5 \times 1000(\mathrm{~g})$ with $5 \times 57(\mathrm{p})$

Accurate comparison calculation, e.g.

- (Per kg price in SuperM) 60(p)
- (1g cost of each, SuperM and FairMart) $0.06(p)$ and $0.057(p)$
- (g per penny for SuperM and FairMart) 16.6(66... g per penny and 17.5(4... g per penny)
- (450 g at Fairmart) 25.65 (p) (<27p)
- (SuperM) 4950 (g) for $(£) 2.97$ AND (Fairmart) $5000(\mathrm{~g})$ for $(£) 2.85$

Conclusion, e.g.
'(Buying carrots from) FairMart (is better value for money.)'

Organisation and communication

Writing

Mark recipe card as their final answer if complete Accept 2812(g) or 2813(g) for carrots
Allow $2.812(5) \mathrm{k}(\mathrm{g})$ or $2.813 \mathrm{k}(\mathrm{g})$ (' k ' must be inserted)
B1 for any 2 of these 3 answers correct
Ignore incorrect units or lack of units for M, A and E marks
M1
Needs to show comparing like quantity with like, unless considering larger quantities where working shows a greater quantity for less money at Fairmart (e.g. 4950 g with 5000 g)

In cost per kg in SuperM, allow truncation of ($1000 \div 450=$) $2.222 \ldots$. to 1 or more decimal places to give 59.4, 59.94, 59.994, etc when $\times 27$ (p) Accept comparison given in pence

	$\mathbf{1} \mathbf{g}$	$\mathbf{5 0 g}$	$\mathbf{4 5 0 g}$	$\mathbf{1 k g}$	$\mathbf{9 k g}$
SuperM	0.06 p	3 p	27 p	60 p	$£ 5.40$
FairMart	0.057 p	2.85 p	25.65 p	57 p	$£ 5.13$

	Per 1 p	Per £1
SuperM	$16.66 . . \mathrm{g}$	$1666.66 . \mathrm{g}$
FairMart	$17.54 . . \mathrm{g}$	$1754.36 . . \mathrm{g}$

FT for 'their costs' provided M1 previously awarded

For OC1, candidates will be expected to:

- present their response in a structured way
- explain to the reader what they are doing at each
step of their response
- lay out their explanations and working in a way that is clear and logical
- write a conclusion that draws together their results and explains what their answer means

For W 1 , candidates will be expected to:

- show all their working
- make few, if any, errors in spelling, punctuation and grammar
- use correct mathematical form in their working
- use appropriate terminology, units, etc.

Must be a whole number of onions
If no marks, award SC1 for answers leading to quantities of carrots, stock and cream in the ratio 450 : $0.8: 4$, e.g. $5625,10,50$, or

3150, 5.6, 28, or
11250, 20, 100
provided all quantities are increased

3(a)(i) 18:30, Saturday	B1	
3(a)(ii) 16:00, Saturday	B1	
3 (b) $320 \div 0.61$ or 524(.59...) 525 (AUD)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
$\text { 4(a) } 3.25+4 \times 2.4(0) \quad \text { (=) (£) } 12.85$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	If no marks, award SC1 for an answer of any of the following:
4(b) (Minimum time) 61 minutes	B3	B2 for an answer of 1 hour 1 minute OR B1 for sight of any one of the following - (8.05-3.25) $\div 2.4(0)$ - $3.25+2.4(0)+2.4(0) \quad(=8.05)$ - $4.8(0) \div 2.4(0) \quad$ ($=2$ hours) - 2 hours OR an answer of a number of minutes >61 but ≤ 120
5(a)(i) Reason, e.g. 'find out if too far to go swimming', 'find out if there is a pool nearby', 'interesting to explore between distance people live from the pool and how often they use the pool' 'to find out how far people would travel to get to the sports centre', 'show relationship between how frequently they go swimming and distance travelled', 'see how far people travelled', 'to analyse the distance people travelled', 'to find out if people who live close by go more often', 'distance can affect participation'	E1	Allow, e.g. 'to see whether people close by use the gym more', 'shows how far people are willing travel', 'people who live close by go more often', 'distance affects participation' Do not accept, e.g. 'not a biased question', 'anyone can answer it', 'it would give a numerical answer', 'to see how people go to the sports centre', 'data can be grouped', 'data can be analysed'
5(a)(ii) Difficult to analyse because..., e.g. 'no categories', 'vague (question)', 'it is not specific', 'need time frame', 'it could be weeks, months, years' 'don't know what often means', 'no time period given', 'it is an open question', 'may not be about swimming in this sports centre'	E1	Do not accept, e.g. 'they may not remember', 'they don't know', 'they might not go swimming'

5(a)(iii) Appropriate question and at least 3 suitable categories with no gaps or overlaps, e.g. 'under 20 minutes, 20 minutes to one hour, more than one hour', ' 1 hour or less, more than 1 hour but less than 2 hours, 2 hours or more'	B2	Ignore gaps in continuous data provided not greater than 1 minute Allow 2 suitable groups with the third group as 'more' or similar Accept if options do not start at zero, provided the first option starts below 31 minutes Provided an appropriate question is given: Working in minutes allow: - B2 for 0-30, 31-40, 41-50 - B1 for 0-30, 30-50, 50-70 Working in hours allow B1 for any of the following - $0-1,1-2,2-3$ - 0-1,2-3, 4-5 Award B1, if the B2 criteria would be met apart from having any one of the following errors: - First option starts between 31 minutes and 1 hour as lower bound, - There is a missing or inappropriate question - Poor or incorrect use of inequalities is seen
5(b)(i) 4 (${ }^{\circ} \mathrm{C}$)	B1	$(28-24=4)$ Do not accept from incorrect working, e.g. 29-25
5(b)(ii) 36 (minutes)	B1	Accept answers in the inclusive range 35 minutes to 37 minutes
6(a)(i)	B1	
6(a)(ii) 180	B1	
$\begin{aligned} & \text { 6(a)(iii) } \quad \text { Sight of total } 403 \\ & (100 \times) \frac{15}{403} \quad \text { or }(100 \times) 15 \div 403 \end{aligned}$	B1 M1 A2	FT 'their $180^{\prime}+223$ FT correctly evaluated 'their 180 ' 223 Mark final answer A1 for 3.72(...\%) or from correct working 4(\%) If no marks, award SC1 for $100 \times 15 \div$ 'their total' correctly evaluated or SC2 for this answer rounded correctly to 1 decimal place (Note: SC1 for $100 \times 15 \div 388=3.8(6 \ldots \%)$ or SC2 if rounded to $3.9(\%)$)

6(b) 72000	B1	
```6(c) Sight of 9.95 (m) or 99.95(m) or 995 (cm) or 9995 (cm) (Least length) 9.95+99.95 + 9.95 or equivalent in cm 119.85 (m)```	B1 M1 A1	If units are given they must be correct   FT 'their least measurements' $x$ and $y$, provided $9.9(\mathrm{~m}) \leq \mathrm{x}<10(\mathrm{~m})$ and $99.9(\mathrm{~m}) \leq \mathrm{y}<100(\mathrm{~m})$ as appropriate   CAO   Award all 3 marks for a correct response   If no marks, award SC1 for an answer of 118.5(m) or   $119.985(\mathrm{~m})$ or $(9.95+9.95+99.5=) 119.4(\mathrm{~m})$
6(c) Alternative method:   $100+10+10-3 \times 0.05$ or equivalent in cm 119.85 (m)	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	M1 for sight of -5 cm or $-0.05(\mathrm{~m})$ used CAO   If no marks, award SC1 for an answer of 119.7.(m)
7(a)(i) (Volume) $\pi \times 3.6^{2} \times 9.3$   Answer in the range $378.4\left(\mathrm{~cm}^{3}\right)$ to $378.7\left(\mathrm{~cm}^{3}\right)$ $378\left(\mathrm{~cm}^{3}\right)$ or $379\left(\mathrm{~cm}^{3}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Mark final answer
$\begin{array}{r} \hline 7 \text { (a)(ii) } 189(\mathrm{~g}) \text { or an answer in the range } \\ 189.2(\mathrm{~g}) \text { to } 189.5(\mathrm{~g}) \end{array}$	B1	Allow rounding or truncation to whole number or a number of decimal places FT, for a similar range, 'their 379' accurately divided by 2
7 (b) (Height is) $9.3 \times 4.2 \div 3.6$ or $1.16666 \ldots \times 9.3$ or $9.3 \div(3.6 \div 4.2)$ or equivalent 10.85 (cm)	M1 A1	Allow M1 for $1.16 \times 9.3$ or $1.17 \times 9.3$ or $9.3 \div 0.85(7 \ldots$...)   Allow answers in the inclusive range 10.78 (cm) to 10.95 (cm)

7(c) Comparison of salt and sugar, e.g.

- (Salt) $\underline{6}$ AND (Sugar) $\underline{90}$
$1.85 \quad 11.7$
- (Salt) $(100 \times 1.85$ AND (Sugar)(100×) 11.7
- (Recommend) 1:15 AND (Beans)1:11.7 $\div 1.85$

Conclusion SALT and an accurate calculation of comparison, e.g.
3(.24...) AND 7(.69...),
0.3(083...) AND 0.13,

30(.83...\%) AND 13(\%),
31(\%) AND 13(\%),
0.31 AND 0.13

1: 15 AND 1 : 6(.32...)
B1 Or equivalent
Ignore any units given

B2 Ignore any units given and any additional statements if SALT unambiguously concluded with appropriate calculations evaluated correctly

Accept rounded or truncated answers
Ignoring units, B1 for an accurate calculation of
comparison, e.g.
3(.24...) AND 7(.69...),
0.3(083...) AND 0.13,

30(.83...\%) AND 13(\%),
31(\%) AND 13(\%)
1: 15 AND 1 : 6(.32...)
OR
B1 for SALT with one of the two comparative values correct (i.e. as above with 'OR')

7(c) Alternative method 1:
Conclusion SALT with evidence of a full method looking at the same number of portions, including ratio methods, e.g.
$1.85 \times 3$ (portions) $\approx 6$ (g)

$$
\text { AND } 11.7 \times 8(\text { portions }) \approx 90(\mathrm{~g})
$$

7(c) Alternative method 2:

Full method with one calculated proportion, compared
with same proportion of the other ingredient, e.g.

- $31 \%$ salt with $0.31 \times 90$
- $13 \%$ sugar with $0.13 \times 6$

Conclusion SALT and an accurate calculation of comparison, e.g.

- 27.9 (g) (sugar which is $>11.7 \mathrm{~g}$ in a portion)
- $0.78(\mathrm{~g})$ (salt which is $<1.85 \mathrm{~g}$ in a portion)

Allow approximately or similar words for ' $\approx$ '
B2 for evidence of, e.g.
$1.85 \times 3$ (portions) $\approx 6(g)$ and
$11.7 \times 8($ portions $) \approx 90(g)$
OR
B1 for conclusion SALT with evidence of, e.g.
$1.85 \times 3$ (portions) $\approx 6(\mathrm{~g})$ or
$11.7 \times 8($ portions $) \approx 90(g)$

Ignore any units given and any additional statements if SALT unambiguously concluded with appropriate calculations evaluated correctly

B1 for appropriate calculations evaluated correctly, with no or incorrect conclusion

8(a) (Number of units is) 800	B1	
(Electricity cost is) $800 \times 0.23$ or $800 \times 23$	M1	FT 'their 20950-20150', must be from attempting this subtraction
(£)184 or 18400(p)	A1	If units are given they must be correct Accept $£ 184.00$ p, do not accept $£ 184$ p
(Standing charge + electricity) (£) 208 or 20800(p)	B1	FT 24 + 'their 184' provided units are consistent May be implied or embedded in further work, e.g. if $184 \times 1.05+24$ seen and calculated correctly to (£)217.2(0)
(Total bill including VAT at $5 \%$ ) $1.05 \times 208$ or $1.05 \times 20800$ or equivalent	M1	FT 'their (£)208' or 'their 20800(p)', including if the standing charge is omitted (i.e. (£) 184 used) Allow if standing charge is added after adding VAT to the electricity cost
(£)218.4(0) or 21840(p)	A1	CAO
(Budget per month $£ 218.40 \div 3=$ ) (£)72.8(0) or 7280(p)	B1	FT 'their total bill' $\div 3$ provided at least 2 marks previously awarded   Allow rounded up to the nearest $£$   On FT allow rounding to 10 p, or rounding up to the nearest $£$
		(Note: FT answers from   - one month standing charge   - standing charge omitted $(£) 201.6(0)) \div 3=(£) 67.2(0)$ $(£) 193.2(0)) \div 3=(£) 64.4(0))$
8(a) Alternative method:   (Number of units is)   800	B1	Watch for stages in other orders, check for embedded equivalent stages
(Electricity cost is) $800 \times 0.23$ or $800 \times 23$	M1	FT 'their 20950-20150', must be from attempting this subtraction
(£)184 or 18400(p)	A1	If units are given they must be correct Accept $£ 184.00$ p, do not accept $£ 184$ p
(Budget before VAT 184 $\div 3+24 \div 3=$ (£) 69.33(3..)	B1	FT 'their 184'+ 8 provided units are consistent May be implied or embedded in further work, e.g. if $(184 \div 3) \times 1.05+8$ seen and calculated correctly to (£)72.4(0)
(Total bill including VAT at 5\%)   $1.05 \times(184 \div 3+24 \div 3)$ or equivalent	M2	FT 'their $184 \div 3+24 \div 3$,   M1 for either of the following:
(Budget per month) (£)72.8(0) or 7280(p)	A1	FT from M2 or M1   Allow rounded up to the nearest $£$   On FT allow rounding to 10p, or rounding up to the nearest $£$


$\begin{aligned} & 8 \text { (b) } 500 \times 1.022^{5} \times 1.016^{15} \\ & \left(500 \times 1.022^{5}=557.473 \ldots\right) \\ & \left(500 \times 1.016^{15}=634.418 \ldots \text { or } 634.42\right) \end{aligned}$   (£) 707.34	M3	OR equivalent method to increase by $2.2 \%$ and to increase by $1.6 \%$ on different amounts for appropriate number of years   M2 for sight of either $\times 1.022^{5}$ or $\times 1.016^{15}$ or equivalent calculations   OR   M1 for sight of either $\times 1.022$ or $\times 1.016$ or equivalent calculations   Mark final answer, CAO, accepting answers in the range ( $£$ ) 707.33 to ( $£$ ) 707.35   (Note: Sight of $(£) 511$ or $(£) 555$ implies $500 \times 1.022$, from working with $2.2 \%$ of $£ 500, \mathrm{M} 1$ is awarded)
9(a)(i)   (Support1 $^{2}=$ ) $0.9^{2}+1.1^{2}$   Support ${ }^{2}=2.02$ or (Support1 $=$ ) $\sqrt{ } 2.02$   (Support 1 =) 1.4(2... m)	M1   A1   A1	Scale drawings are not accepted   Do not accept rounded to 2 , unless final answer is 1.42(1... m)**   FT from M1 for the correctly evaluated square root of 'their 2.02' provided 'their answer' > 1.1 (m)
$\begin{aligned} & \text { 9(a)(ii) } \sin \text { base angle }=\frac{1.1+0.8}{2.6} \\ & \sin ^{-1} \frac{1.1+0.8}{2.6} \text { or } \sin ^{-1} 0.73(0769 \ldots .) \\ & \text { (Base angle }=) 46.95\left(\ldots{ }^{\circ}\right) \text { or } 47\left(^{\circ}\right) \end{aligned}$	M1   m1   A1	OR alternative full method using Pythagoras' theorem then cos or tan   OR FT correct statement for 'their inverse trig ratio'   Allow 46.88(... ${ }^{\circ}$ ) or $46.9\left({ }^{\circ}\right)$   ISW unless subtracted from $90^{\circ}$   If no marks, award SC1 for an answer of $50.7\left({ }^{\circ}\right)$ or $51\left({ }^{\circ}\right)$ from working with Support 1
9(b) (Discount cost of bricks)   ( $516-8 \times 22.5(0)=$ )   (£) 336   $100 \times 336 \div 80$ or $100 \times \frac{336}{80}$   (£) 420	B1   M1   A1	FT 'their $516-8 \times 22.5(0)$ ' provided $\neq 516$ and $\neq 180$ for M1 and possible A1   If no marks, award   SC2 for ( $516 \div 0.8-180=$ ) (£) 465   OR   SC1 for $(516 \div 0.8=)(£) 645$ or   $(100 \times 180 \div 80=)(£) 225$


10(a)(i) 120	B1	
10(a)(ii) $1800 \leq x<2000$	B1	Accept '(£) 1800 to (£)2000', or '(£)1800-(£)2000'
10(a)(iii) Reason based on agreement due to the 4 people earning $£ 5800$ to $£ 7800$ per month or the majority of lower wages, e.g.   'the data is skewed',   'only a few of the employees will earn more than the mean wage',   'because most people employed are in the lowest 2 groups of the monthly wage' 'as the majority earn between 1800 and 2100 '	E1	Allow, e.g.   'because there is a great difference between the monthly wages',   'the big numbers would affect the mean', 'more than half are in the first group'   Do not accept, e.g.   'she doesn't know the exact values', 'using the median would be better', 'because there are no employees that have between 2400 and 5800 monthly wage', 'there are 64 in the first group'
10(b)(i) (2200, 48) joined to $(2400,72)$ joined to (3000, 80)	B2	Joined with a curve or a straight line B1 for a cumulative graph with either of the following:   - correct plots but not joined,   - 'their 2 plots' joined provided 1 plot 'correct' including FT plot at ( $3000,48<y \leq 80$ )
10(b)(ii) $£ 2160$	B1	
10(b)(iii) 22.5(\%) OR answer from correct working in the range $21(.25 \%$ ) to 23.75(\%) or 24(\%)	B2	Working $\frac{17}{80} \times 100$ to $\frac{19}{80} \times 100$   B1 for sight of $\frac{17}{80}$ to $\frac{19}{80}$

## GCSE MARKING SCHEME

## SUMMER 2019

GCSE<br>MATHEMATICS - NUMERACY UNIT 1 - HIGHER TIER 3310U50-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCSE MATHEMATICS - NUMERACY (3310U50-1)

## SUMMER 2019 MARK SCHEME



3(a) (Cost to Sam) $200 \times 25$ (=£5000)	M1	
(Number of trees Sam expects to sell is)	M1	
$\begin{aligned} 200-0.22 \times 200 \text { or } 200 \times 0.78 \\ \text { (=) } 156 \text { (trees) } \end{aligned}$	A1	Depends only on previous M1
(Money from sales of trees is $40 \times 156=£$ ) 6240	B1	FT the number of trees sold, i.e. $40 \times$ 'their 156 '
(Expected profit is $£ 6240-£ 5000=$ )   (£) 1240	B1	FT 'their (40 $\times$ 'their 156 ') - 5000 correctly evaluated
3(a) Alternative method:   (Number of trees Sam expects to sell is)   $200-0.22 \times 200$ or $200 \times 0.78$		
(=) 156 (trees)	A1	
(Expected profit) $156 \times(40-25)$	M2	FT 'their 156'   M1 for $156 \times(40-25)-\ldots .$. or
$-(200-156) \times 25$   (£) 1240	A1	$C A O \quad \cdots-(200-156) \times 25)$
3(b) A suitable diagram with at least 3 hexagons (or 2	E1	ISW
extra hexagons) shown to tessellate OR   Sight of $3 \times 120^{\circ}=360^{\circ}$ or equivalent		A suitable diagram will involve 3 hexagons meeting at a point at least once, the 6 sides of the hexagons must be shown
		Allow if a correct diagram given with angles unlabelled or incorrectly labelled
		Do not accept if only the exterior angles (labelled correctly or incorrectly) of the given hexagon shown, need to show further hexagons


4(a) Sight of (Milford Haven to Ruabon) $90 \times 11 / 3$ OR (Ruabon to Swansea) $80 \times 11 / 4$	M1	For the appropriate idea of speed $\times$ time.   Allow sight of   - $90 \times 80$ (minutes)   - $80 \times 75$ (minutes)   - $\quad 90 \times 1.3(3)$   - $\quad 90 \times 1.2(0)$   - $80 \times 1.15$
(Milford Haven to Ruabon) 120 (miles) AND (Ruabon to Swansea) 100 (miles)	A2	CAO   A1 for $90+30$ or $80+20$ or equivalent only provided there is no evidence of any misconception, e.g. $(80+35)$
(Total distance) 220 (miles)	B1	FT provided at least M1, A1 previously awarded
Organisation and communication	OC1	For OC1, candidates will be expected to:   - present their response in a structured way   - explain to the reader what they are doing at each   step of their response   - lay out their explanations and working in a way that is clear and logical   - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W 1 , candidates will be expected to:   - show all their working   - make few, if any, errors in spelling, punctuation and grammar   - use correct mathematical form in their working   - use appropriate terminology, units, etc.


4(b) (Total time is) 155 (minutes), or for sight of 80 (minutes) and 75 (minutes)   (Total fuel needed would be) $\begin{gathered} 155 \times 0.4 \times 4.55, \text { or } \\ 80 \times 0.4 \times 4.55+75 \times 0.4 \times 4.55 \end{gathered}$   282(.1) (litres)	M1	FT 'their number of minutes' provided both parts of the journey are considered and both parts take > 60 minutes   Use of ' $\div 2.5^{\prime}$ ' is equivalent to ' $\times 0.4$ ' (referred to as 'a product' in the details for M1 and A1)   M1 for sight of   - product of any two of $155,0.4$ and 4.55 seen, OR   - product of any two of $80,0.4$ and 4.55 seen AND product of any two of $75,0.4$ and 4.55 seen AND intention to sum these two products   CAO, accept 280 (litres) only if 282(.1) seen A1 for sight of any one of the following, provided at least M1 previously awarded:   - $0.4 \times 705.25$   - $0.4 \times 364$   - $0.4 \times 341.25$   - $4.55 \times 32$   - $4.55 \times 30$   - $4.55 \times 62$   - $1.82 \times 155$   - $1.82 \times 80$   - $1.82 \times 75$   OR   A1 for one of the two stages of evaluating products calculated accurately


5(a)(i) $2.5 \times 10^{7}$	B1	
5(a)(ii) $9600 \mathrm{~m}^{3}$	B1	
5(b) (Volume seen or implied) $59700000\left(\mathrm{~m}^{3}\right)$ or $60000000\left(\mathrm{~m}^{3}\right)$   OR   (Surface area seen or implied, used as) 4.5(4) or 5   Average depth calculation, e.g.   - $59700000 \div 4540000$   - $60000000 \div 4500000$   - $6000 \div 450$   - $600 \div 45$   - $60000000 \div 5000000$   - $60 \div 5$   OR sight of a trial and improvement method with suitable correct calculation(s):   - $4.54 \times 12=54.48$ and $4.54 \times 13=59.02$   - $4.54 \times 13=59.02$ and $4.54 \times 14=63.56$   - $\quad$ single calculation (not $\times 13$ ) between $4.54 \times 12.1=54.934 \text { and }$   $4.54 \times 13.1=59.474$   - $4.5 \times 12=54$ and $4.5 \times 13=58.5$   - $4.5 \times 13=58.5$ and $4.5 \times 14=63$   - single calculation between $4.5 \times 13.1=58.95$ and $4.5 \times 13.4=60.3$   - $5 \times 12=60$	B1	Accept using index notation or standard form, e.g. $59.7 \times 10^{6}, 5.97 \times 10^{7}, 60 \times 10^{6}, 6 \times 10^{7}$   Accept exact or correctly rounded volume written in $\mathrm{m}^{3}$, i.e. do not accept, e.g. 59000000   Ignore any units given   FT e.g. 'their volume' $\div 4540000$   Accept written as a fraction   Accept exact or rounded values provided estimates are reasonable   Watch for compensating errors, which is MO and AO
Answer in the range $12(\mathrm{~m})$ to $13.5(\mathrm{~m})$	A1	CAO, answer must be in this range, no FT


6(a)(i) Maesystrad AND 46 (minutes)	B1	
6(a)(ii) Rhewlteg AND gives decision used unambiguously as median	B1	Accept decision based on median without the use of the term 'median', e.g. 'half of them took more than 39 minutes'   Allow, e.g.   - Rhewlteg as median is 38 (minutes) (from misreading the scale correct median is 39 minutes)   - Rhewlteg as average is 39 (minutes)   Do not accept contradictions, decision needs to be solely based on the median
6(a)(iii) Rhewlteg AND 25 (minutes)	B1	
6(a)(iv) 'Don't know' indicated or unambiguously implied AND reason, e.g.   'not told',   'it doesn't say (on the diagam)',   'doesn't give you the number of students/pupils', 'doesn't tell you how many were asked',   'it is about travel times (not number of students)', 'only gives the timings',   'it shows distribution of travel times, not number of students',   'only shows proportions of the students'	E1	Allow, e.g. 'doesn't give you the frequency (of students)',   Do not accept, e.g. 'can't tell', 'not enough data', 'shows only median, range and measures of spread'
6 (b)(i) 120 (students)	B1	
6(b)(ii) 23 (minutes)	B1	
7(a) Austria	B1	
7(b) United Kingdom	B1	
7(c) Argentina with appropriate working, e.g. Sight of 13 to 16 (for Argentina) AND 3 to 4 (for Canada)	B2	Accept unlabelled population density, provided not ambiguous or from incorrect working   B1 for approximate population $/ \mathrm{km}^{2}$ (for Argentina) 13 to 16 OR (for Canada) 3 to 4   B0 for unsupported answer 'Argentina' or if inappropriate working given, e.g.   - $4 \times 10000000$   - 'Canada 34000 000, Argentina 40000 000’
8(a) $401\left(\mathrm{~cm}^{2}\right)$	B1	
8(b)   A correct evaluation of $\left(4^{7 / 2}=\right) 128$ OR $\quad\left(4^{5 / 2}=\right) 32$ $\begin{aligned} \left(400+4^{7 / 2}\right)-\left(400+4^{5 / 2}\right) & \\ \text { OR } 4^{7 / 2}-4^{5 / 2} & \text { or equivalent } \\ & =96\left(\mathrm{~cm}^{2}\right) \end{aligned}$	B1 M1 A1	or sight of appropriate 528 OR 432 $(528-432 \text { OR } 128-32)$   CAO


9.		Accept use of $0.24 \dot{9}$ and $284 . \dot{9}$ throughout, but do not accept use of 0.249 and 284.9
Use of 275 (volts) AND 285 (volts) OR   Use of 0.15 (amps) AND 0.25 (amps)	B1	
$\frac{v}{1}=R$   (Least possible value of $\mathrm{R}=$ )	B1	May be implied in further working
$\frac{275}{0.25}$	M1	$\begin{aligned} & \text { FT 'their } 275 \text { ' provided } 270 \leq \mathrm{V}<280 \text { AND } \\ & \text { 'their } 0.25 \text { ' provided } 0.2<1 \leq 0.3 \end{aligned}$
= 1100 (ohms)	A1	CAO
(Greatest possible value of $R=$ ) $\frac{285}{0.15}$	M1	FT 'their 285 ' provided $280<\mathrm{V} \leq 290$ AND 'their 0.15 ' provided $0.1 \leq 1<0.2$
$=1900$ (ohms)	A1	CAO
$\begin{aligned} & \text { 10. } A O^{2}=100^{2}-80^{2} \quad \text { or }(A O=) \sqrt{100^{2}-80^{2}} \\ & A O^{2}=3600 \quad \text { or }(A O=) \sqrt{3600} \text { or }(A O=) 60(\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of $20 \times \sqrt{ }\left(5^{2}-4^{2}\right)$   If $\sqrt{ } 3600$ evaluated, mark final answer
$A E^{2}=110^{2}+3600$ or equivalent $\quad O R$ $(\mathrm{AE}=) \sqrt{110^{2}+60^{2}}$ or equivalent	M1	FT 'their derived 3600 ' or 'their derived 60 ' but not use of 100 or 80 for AO
$A E=\sqrt{15700}(\mathrm{~cm}) \quad$ ISW	A1	Or 10157
$\begin{aligned} A O^{2}= & 100^{2}-80^{2} \text { or } \quad(A O=) \sqrt{100^{2}-80^{2}} \\ & (A E=) \sqrt{100^{2}-80^{2}+110^{2}} \end{aligned}$	M1 M2	M1 for $100^{2}-80^{2}+110^{2}$
AE $=\sqrt{ } 15700(\mathrm{~cm})$ ISW	A1	Or 10V157
		If no marks awarded,
		SC2 for $\sqrt{100^{2}+80^{2}+110^{2}}$ leading to an answer of $\sqrt{28500}$ ISW, or SC1 for $100^{2}+80^{2}+110^{2}$

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& \begin{array}{l}
11(\mathrm{a}) \\
\text { (Area }=) \frac{1}{2} \times 2 \times(0+0+2(2+4+4.4+4+2.6)) \\
\text { OR } \frac{1}{2} \times 2 \times(4+8+8.8+8+5.2) \\
= \\
(\text { Volume }=) 34 \times 3\left(\mathrm{~mm}^{2}\right)
\end{array} \\
& =204\left(\mathrm{~mm}^{3}\right)
\end{aligned}
$$ \& M2
A1
M1

A1 \& | Award M1 if only one reading incorrect |
| :--- |
| FT from M1 |
| FT from M1 or M2 for a possible M1A1 If no marks previously awarded, FT 'their 34' provided an attempt made to use the trapezium rule for a possible M1 only | <br>

\hline Alternative method:

$$
\begin{aligned}
& \frac{(0+2)}{2} \times 2+\frac{(2+4)}{2} \times 2+\frac{(4+4.4)}{2} \times 2+ \\
& \begin{array}{l}
\frac{(4.4+4)}{2} \times 2+\frac{(4+2.6)}{2} \times 2+\frac{(2.6+0)}{2} \times 2 \\
{[2+6+8.4+8.4+6.6+2.6]}
\end{array}=34\left(\mathrm{~mm}^{2}\right) \\
& (\text { Volume }=) 34 \times 3 \quad(\times 2)
\end{aligned}
$$

$$
=204\left(\mathrm{~mm}^{3}\right)
$$ \& M2

A1
M1

A1 \& | Each area may be seen as the sum of the area of a rectangle and a triangle |
| :--- |
| M1 for the sum of these 6 areas with one error (maybe repeated) in reading the scale OR with 1 incorrect term |
| FT from M1 or M2 |
| FT from M1 or M2 for a possible M1A1 If no marks previously awarded, FT 'their 34' provided an attempt made to sum the 6 areas for a possible M1 only | <br>

\hline | 11(b) $30 \times$ (number of pendants made) $\div 240$ or equivalent |
| :--- |
| (Number of circular pendants in sample =) 12 Sight of any 2 of $6.5,3.7(5), 7.7(5)$ or equivalents |
| (Number in sample $=$ ) 6, 12, 4, 8 | \& M1

A1
A1

B1 \& | e.g. (number of pendants made) $\div 8$ |
| :--- |
| Sight of this calculation for any shaped pendant |
| Accept mixed numbers |
| Needs to be from correct working |
| Can come from M1A1A0 |
| An unsupported 6, 12, 4, 8 is awarded M1A1A0B1 |
| An unsupported 7, 12, 4, 8 is awarded M1A1A0B0 | <br>

\hline
\end{tabular}

	B1 M1 m1 A1 A B2	FT 'their derived volume of sphere'   e.g. radius $^{2}=\frac{36000 \pi}{\pi \times 40(\times 5)}$   CAO   For B2, FT 'their derived 180 ' provided their 'b' is as small as possible and that 'their derived 180' can be simplified   If 'their derived 180 ' is a square number, then B1 only can be awarded for the correct square root of 'their 180'   For B1, FT 'their derived 180'   B1 for writing 180 as a product of 2 or more factors where one of the factors OR the product of a pair of their factors is a square number   e.g. $4 \times 45,3 \times 3 \times 20$, OR   B1 for writing $\sqrt{ } 180$ as a product of 2 or more factors where one of the factors OR the product of a pair of their factors is a whole number $\text { e.g. } \sqrt{ } 5 \times \sqrt{ } 12 \times \sqrt{ } 3$


$\begin{aligned} & \text { 12(a)(i) e.g. } 100 x=8.333 \ldots, 1000 x=83.333 \ldots \text { AND } \\ & \text { an attempt to subtract both sides } \\ & =\frac{75}{900} \text { or } \begin{aligned} \frac{825}{9900} & \text { or } \\ & \frac{8325}{99900} \end{aligned} \text { or equivalent } \\ & =\frac{1}{12} \end{aligned}$	M1   A1   A1	Allow A1 for e.g. 7.5/90   FT from M1A0 provided of equivalent difficulty
$\begin{aligned} & \begin{array}{l} 12(\mathrm{a})(\mathrm{ii)} \\ \begin{array}{c} \text { Area }=) \\ 12 \end{array} \times \pi \times 120^{2} \\ =1200 \pi\left(\mathrm{~cm}^{2}\right) \end{array} \end{aligned}$	M1   A1	FT 'their 1/12' from (i) throughout   If no marks awarded,   SC1 for ( $11 / 12 \times \pi \times 120^{2}$ or equivalent $=$ )   $13200 \pi\left(\mathrm{~cm}^{2}\right)$
12(b) Sight of $\frac{x}{360} \times 2 \times \pi \times 36$ or equivalent $\underline{x} \times 2 \times \pi \times 36+90=200 \quad$ or equivalent 360 $360 \times 2 \times \pi \times 36=200-90$ or equivalent $\begin{gathered} \frac{x}{5} \times \pi=200-90 \text { OR } \quad(x=) \frac{(200-90) \times 360}{2 \times \pi \times 36} \\ x=\frac{550}{\pi} \end{gathered}$	B1 M1 m1 m1 A1	e.g. $\frac{x}{5} \times \pi$. Accept any symbol for x   These two m 1 marks can be done in any order For isolating the x term   For fully simplifying the fraction correctly OR for isolating $x$   Needs to come from convincing work from M1m1m1 e.g. $\frac{39600}{72 \pi} \frac{110 \times 360}{72 \pi}$   If no marks awarded or B1 only awarded, then SC1 for $\underline{550} \times 2 \times \pi \times 36$ or equivalent $360 \pi$   AND possibly another SC1 for convincing work showing that this simplifies to 110 , and that $110+90=200$

## GCSE MARKING SCHEME

## SUMMER 2019

GCSE<br>MATHEMATICS - NUMERACY UNIT 2 - HIGHER TIER 3310U60-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCSE MATHEMATICS - NUMERACY (3310U60-1)

## SUMMER 2019 MARK SCHEME

GCSE Mathematics - Numeracy Unit 2: Higher Tier	Mark	Comments
```1. Sight of 9.95(m) or 99.95(m) or 995 (cm) or 9995 (cm) (Least length) 9.95+99.95 + 9.95 or equivalent in cm 119.85 (m)```	B1   M1   A1	If units are given they must be correct   FT 'their least measurements' $x$ and $y$, provided $9.9(\mathrm{~m}) \leq \mathrm{x}<10(\mathrm{~m})$ and $99.9(\mathrm{~m}) \leq \mathrm{y}<100(\mathrm{~m})$ as appropriate   CAO   Award all 3 marks for a correct response   If no marks, award SC1 for an answer of 118.5(m) or   $119.985(\mathrm{~m})$ or $(9.95+9.95+99.5=) 119.4(\mathrm{~m})$
1. Alternative method: $100+10+10-3 \times 0.05$ or equivalent in cm 119.85 (m)	$\begin{aligned} & M 2 \\ & \text { A1 } \end{aligned}$	M1 for sight of -5 cm or $-0.05(\mathrm{~m})$ used CAO If no marks, award SC1 for an answer of 119.7.(m)
2(a)(i) (Volume) $\pi \times 3.6^{2} \times 9.3$ Answer in the range $378.4\left(\mathrm{~cm}^{3}\right)$ to $378.7\left(\mathrm{~cm}^{3}\right)$ or $379\left(\mathrm{~cm}^{3}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Mark final answer
2(a)(ii) 189 (g) or an answer in the range 189.2 (g) to 189.5 (g)	B1	Allow rounding or truncation to whole number or a number of decimal places FT, for a similar range, 'their 379' accurately divided by 2
2(b) (Height is) $9.3 \times 4.2 \div 3.6$ or $1.16666 \ldots \times 9.3$ or $9.3 \div(3.6 \div 4.2)$ or equivalent 10.85 (cm)	M1 A1	Allow M1 for 1.16×9.3 or 1.17×9.3 or $9.3 \div 0.85(7 \ldots$...) Allow answers in the inclusive range 10.78 (cm) to 10.95 (cm)

2(c) Comparison of salt and sugar, e.g.

- (Salt) 6 AND (Sugar) $\underline{90}$
1.8511 .7
- (Salt) $\left(100 \times 1.85\right.$ AND (Sugar) $(100 \times) \frac{11.7}{90}$
- (Recommend) 1:15 AND (Beans)1:11.7 $\div 1.85$

Conclusion SALT and an accurate calculation of comparison, e.g.
3(.24...) AND 7(.69...),
0.3(083...) AND 0.13,

30(.83....\%) AND 13(\%),
31(\%) AND 13(\%),
0.31 AND 0.13

1: 15 AND 1 : 6(.32...)

B1	Or equivalent
	Ignore any units given

B2 Ignore any units given and any additional statements if SALT unambiguously concluded with appropriate calculations evaluated correctly

Accept rounded or truncated answers
Ignoring units, B1 for an accurate calculation of
comparison, e.g.
3(.24...) AND 7(.69...),
0.3(083...) AND 0.13,

30(.83...\%) AND 13(\%),
31(\%) AND 13(\%)
1: 15 AND 1 : 6(.32...)
OR
B1 for SALT with one of the two comparative values correct (i.e. as above with 'OR')

2(c) Alternative method 1:
Conclusion SALT with evidence of a full method looking at the same number of portions, including ratio methods, e.g.
1.85×3 (portions) ≈ 6 (g)

$$
\text { AND } 11.7 \times 8(\text { portions }) \approx 90(g)
$$

2(c) Alternative method 2:

Full method with one calculated proportion, compared
B1
with same proportion of the other ingredient, e.g.

- 31% salt with 0.31×90
- 13% sugar with 0.13×6

Conclusion SALT and an accurate calculation of comparison, e.g.

- 27.9 (g) (sugar which is $>11.7 \mathrm{~g}$ in a portion)
- $\quad 0.78$ (g) (salt which is $<1.85 \mathrm{~g}$ in a portion)

Allow approximately or similar words for ' \approx '
B2 for evidence of, e.g.
1.85×3 (portions) $\approx 6(g) \quad$ and
$11.7 \times 8($ portions $) \approx 90(g)$
OR
B1 for evidence of, e.g.
1.85×3 (portions) $\approx 6(\mathrm{~g})$ or
$11.7 \times 8($ portions $) \approx 90(g)$

Ignore any units given and any additional statements if SALT unambiguously concluded with appropriate calculations evaluated correctly

B1 for appropriate calculations evaluated correctly, with no or incorrect conclusion

3(a) (Number of units is) 800	B1	
(Electricity cost is) 800×0.23 or 800×23	M1	FT 'their 20950-20150', must be from attempting this subtraction
(£)184 or 18400(p)	A1	If units are given they must be correct Accept $£ 184.00$ p, do not accept $£ 184$ p
(Standing charge + electricity) (£) 208 or 20800(p)	B1	FT 24 + 'their 184' provided units are consistent May be in implied or embedded in further work, e.g. if $184 \times 1.05+24$ seen and calculated correctly to (£)217.2(0)
(Total bill including VAT at 5\%) 1.05×208 or 1.05×20800 or equivalent	M1	FT 'their (£)208' or 'their 20800(p)', including if the standing charge is omitted (i.e. ($£$) 184 used) Allow if standing charge is added after adding VAT to the electricity cost
(£)218.4(0) or 21840(p)	A1	CAO
(Budget per month $£ 218.40 \div 3=$) (£)72.8(0) or 7280(p)	B1	FT 'their total bill' $\div 3$ provided at least 2 marks previously awarded Allow rounded up to the nearest $£$ On FT allow rounding to 10 p, or rounding up to the nearest $£$
		(Note: FT answers from - one month standing charge $(£) 201.6(0)) \div 3=(£) 67.2(0)$ - standing charge omitted $(£) 193.2(0)) \div 3=(£) 64.4(0))$
3(a) Alternative method:		Watch for stages in other orders, check for embedded equivalent stages
(Number of units is) 800	B1	
(Electricity cost is) 800×0.23 or 800×23	M1	FT 'their 20950-20150', must be from attempting this subtraction
(£)184 or 18400(p)	A1	If units are given they must be correct Accept $£ 184.00$ p, do not accept $£ 184$ p
(Budget before VAT 184 $\div 3+24 \div 3=$ (£) 69.33(3..)	B1	FT 'their 184'+ 8 provided units are consistent May be implied or embedded in further work, e.g. if $(184 \div 3) \times 1.05+8$ seen and calculated correctly to (£)72.4(0)
(Total bill including VAT at 5\%) $1.05 \times(184 \div 3+24 \div 3)$ or equivalent	M2	FT 'their $184 \div 3+24 \div 3$, M1 for either of the following:
(Budget per month) (£)72.8(0) or 7280 (p)	A1	FT from M2 or M1 Allow rounded up to the nearest $£$ On FT allow rounding to 10p, or rounding up to the nearest $£$

Organisation and communication Writing	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
$\begin{aligned} & \text { 3(b) } 500 \times 1.022^{5} \times 1.016^{15} \\ & \left(500 \times 1.022^{5}=557.473 \ldots\right) \\ & \left(500 \times 1.016^{15}=634.418 \ldots \text { or } 634.42\right) \end{aligned}$ (£) 707.34	M3	OR equivalent method to increase by 2.2% and to increase by 1.6% on different amounts for appropriate number of years M2 for sight of either $\times 1.022^{5}$ or $\times 1.016^{15}$ or equivalent calculations OR M1 for sight of either $\times 1.022$ or $\times 1.016$ or equivalent calculations Mark final answer, CAO, accepting answers in the range (£) 707.33 to (£) 707.35 (Note: Sight of $(£) 511$ or $(£) 555$ implies 500×1.022, from working with 2.2% of $£ 500, \mathrm{M} 1$ is awarded)
4(a)(i) (Support12 $=$) $0.9^{2}+1.1^{2}$ Support $^{2}=2.02$ or (Support1 =) $\sqrt{2} 2.02$ (Support $1=$) $1.4(2 \ldots \mathrm{~m})$	M1 A1 A1	Scale drawings are not accepted Do not accept rounded to 2 , unless final answer is 1.42(1... m)** FT from M1 for the correctly evaluated square root of 'their 2.02' provided 'their answer' > 1.1 (m)
$\begin{aligned} & \text { 4(a)(ii) } \sin \text { base angle }=\frac{1.1+0.8}{2.6} \\ & \sin ^{-1} \frac{1.1+0.8}{2.6} \text { or } \sin ^{-1} 0.73(0769 \ldots) \\ & \text { (Base angle }=) 46.95\left(\ldots{ }^{\circ}\right) \text { or } 47\left(^{\circ}\right) \end{aligned}$	M1 m1 A1	OR alternative full method using Pythagoras' theorem then cos or tan OR FT correct statement for 'their inverse trig ratio' Allow 46.88(... ${ }^{\circ}$) or $46.9\left({ }^{\circ}\right)$ ISW unless subtracted from 90° If no marks, award SC1 for an answer of $50.7\left({ }^{\circ}\right)$ or $51\left({ }^{\circ}\right)$ from working with Support 1

4(b) (Discount cost of bricks) ($516-8 \times 22.5(0)=$) (£) 336 $100 \times 336 \div 80$ or $100 \times \frac{336}{80}$ (£) 420	B1 M1 A1	FT 'their $516-8 \times 22.5(0)$ ' provided $\neq 516$ and $\neq 180$ for M1 and possible A1 If no marks, award SC2 for ($516 \div 0.8-180=$) (£) 465 OR SC1 for ($516 \div 0.8=$) (£) 645 or $(100 \times 180 \div 80=)(£) 225$
5(a)(i) $1800 \leq x<2000$	B1	Accept '(£)1800 to (£)2000', or '(£)1800-(£)2000'
5(a)(ii) Reason based on agreement due to the 4 people earning $£ 5800$ to $£ 7800$ per month or the majority of lower wages, e.g. 'the data is skewed', 'only a few of the employees will earn more than the mean wage', 'because most people employed are in the lowest 2 groups of the monthly wage' 'as the majority earn between 1800 and 2100 '	E1	Allow, e.g. 'because there is a great difference between the monthly wages', 'the big numbers would affect the mean', 'more than half are in the first group' Do not accept, e.g. 'she doesn't know the exact values', 'using the median would be better', 'because there are no employees that have between 2400 and 5800 monthly wage', 'there are 64 in the first group'
5(b)(i) $(2200,48)$ joined to $(2400,72)$ joined to $(3000$, 80)	B2	Joined with a curve or a straight line B1 for a cumulative graph with either of the following: - correct plots but not joined, - 'their 2 plots' joined provided 1 plot 'correct' including FT plot at ($3000,48<y \leq 80$)
5(b)(ii) \quad ¢2160	B1	
5(b)(iii) 22.5(\%) OR answer from correct working in the range $21(.25 \%$) to $23.75(\%)$ or $24(\%)$	B2	Working $\frac{17}{80} \times 100$ to $\frac{19}{80} \times 100$ B1 for sight of $\frac{17}{80}$ to $\frac{19}{80}$

6. Morgannwg bank $\begin{array}{r} 1.0041^{12}-1 \text { OR }\left(1+\frac{0.0492}{12}\right)^{12}-1 \\ =0.0503(\ldots) \text { or } 5.03(\ldots) \% \end{array}$ Banc Gwynedd $\left(1+\frac{0.0492}{4}\right)^{4}-1$ $=0.0501(\ldots) \text { or } 5.01(\ldots) \%$ (Answer =) 0.02\%	M1 M1 A1 B1	Do not accept 0.0503(...) \% unless corrected in further work Do not accept 0.0501(...) \% unless corrected in further work FT 'their 0.0503(...) or 5.03(...)\%' AND FT 'their 0.0501(...) or 5.01(...)\%' provided at least one M1 mark awarded and final answer written correct to 2 d.p
Alternative method: $\begin{gathered} \text { Amount } \times 1.0041^{12}-\text { amount } \times\left(1+\frac{0.0492}{4}\right)^{4} \\ =\text { correct difference } \end{gathered}$ $\frac{\text { difference }}{\text { amount }}(\times 100)$ $=0.02 \%$	M2 A1 M1 A1	M1 for a subtraction with 1 correct product From M2 only FT 'their values' provided at least M1 previously awarded Needs to be correct to 2 d.p. on FT
7(a) Frequency density	B1	
7(b) 'No' OR 'You cannot tell' AND e.g. 'The heaviest player could have been 140 kg and the lightest player could have been 70 kg , but we cannot tell', 'It doesn't give you the mass of any player', 'You cannot tell exact weights because it is grouped data' OR No AND e.g. 'The lightest and heaviest players could not be 70kg and 140 kg because of how groups are written'	E1	Do not accept reasons e.g. 'Because it is grouped data' without further explanation about how the data could be distributed in the groups, or 'The graph is not accurate enough'
$\begin{aligned} 7 \text { (c) } \begin{aligned} 10 \times 0.8+10 \times 1.1 & +20 \times 0.1 \\ = & 21 \end{aligned}, ~ \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$	Allow for $\mathrm{x} \times 0.8+10 \times 1.1+20 \times 0.1$, where $6 \leq \mathrm{x}<10$ May be seen on the diagram CAO A1 for 17.8 , possibly rounded to 17 or 18 If no marks, SC1 for sight of $10 \times 1.1+20 \times 0.1$, or $11+2$, or 13 May be seen on the diagram

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
7(d) (Mid-points) 80, 95, 105, 115, 130 \\
(Frequencies of) 8, 5, 8, 11, 2
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& May be seen on the graph May be seen on the graph or in (c) FT 'their 8, 11, 2' from (c) \\
\hline \[
\begin{array}{r}
80 \times 8+95 \times 5+105 \times 8+115 \times 11+130 \times 2 \\
\left(640+475+840+1265+260 \begin{array}{l}
\text { or equivalent } \\
=3480)
\end{array}\right. \\
\div 34 \\
=102.3(529 \ldots) \text { or } 102.4
\end{array}
\] \& M1

m1

A1 \& | FT their frequencies (but not use of frequency densities $0.4,0.5,0.8,1.1$ and 0.1) |
| :--- |
| FT their mid-points provided they are within the groups (inclusive of the boundaries) |
| Allow FT for the sum of their frequencies |
| CAO |
| Allow an answer of 102 from correct working |

\hline 8(a) (radius =) $15 \times 33 \div(22+33)$ or $15 \times 3 / 5(=9)$ or equivalent \& B2 \& Working MUST be shown here May be seen with appropriate tangent ratios If Pythagoras used, appropriate use of the scale factor would be needed Allow B1 for sight of $33 / 55$ or equivalent OR $55 / 33$ or equivalent

\hline Sight of $1 / 3 \times \pi \times 15^{2} \times 55 \quad$ OR $\quad 1 / 3 \times \pi \times 9^{2} \times 33$ \& B1 \& (12952 to 12961 OR 2797.7 to 2800)

\hline $$
\begin{array}{rl}
1 / 3 \times \pi \times 15^{2} \times 55-1 & 1 / 3 \times \pi \times 9^{2} \times 33 \\
& =4125 \pi-891 \pi\left(=3234 \pi\left(\mathrm{~cm}^{3}\right)\right)
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& Accept values in the range 10154.7 to $10161.2\left(\mathrm{~cm}^{3}\right)$

\hline
\end{tabular}

9. Use of cosine rule followed by sine rule $\begin{aligned} & \text { Distance of Alpha from Aberwyn } \\ & \begin{array}{c} \text { distance }=) \sqrt{5.5^{2}+2.4^{2}-2 \times 5.5 \times 2.4 \times \cos 76\left(^{\circ}\right)} \\ \text { or }(\text { dist }=) \sqrt{ } 29.623 \ldots \\ \\ (\text { distance }=) 5.4(427 \ldots)(\mathrm{km}) \end{array} \end{aligned}$ Distance of Beta from Aberwyn $($ distance $=) \frac{5.4(427 \ldots)}{\sin 118\left({ }^{\circ}\right)} \times \sin 32\left({ }^{\circ}\right)$ $=3.2(4 \ldots) \text { to } 3.3(\mathrm{~km})$	S1 M2 A1 M2 A1	M1 for (distance ${ }^{2}=5.5^{2}+2.4^{2}-2 \times 5.5 \times 2.4 \times \cos 76\left({ }^{\circ}\right)$ or (dist $^{2}=$) 29.623... CAO FT 'their derived 5.4(427...)' M1 for $\frac{\text { distance }}{\sin 32\left({ }^{\circ}\right)}=\frac{5.4(427 \ldots)}{\sin 118\left({ }^{\circ}\right)}$ FT from M2 for their sine rule only
$\begin{aligned} & 10 \text { (a) } \begin{aligned} & 0.035 \times(250000-180000) \\ &+0.05 \times(255000-250000) \\ &(=2450+250=2700) \end{aligned} \end{aligned}$	B2	B1 for $0.035 \times(250000-180000)(=2450) \quad O R$ B1 for $0.05 \times(255000-250000) \quad(=250)$

$\begin{aligned} & \text { 10(b) Sight of } 0.05 \times\left(x-250 \begin{array}{l} 000) \\ =0.05 x-12500 \\ x+2450+0.05 x-12500=327000 \text { or equivalent } \\ 1.05 x-10050=327000 \text { OR } 1.05 x=337050 \\ x=(£) 321000 \end{array}\right. \end{aligned}$	B1 B1 M1 m1 A1	May be embedded in their equation May be embedded in their equation No further marks unless an appropriate equation seen FT 'their 0.035(250 000-180 000)' AND 'their 0.05×250000 ' CAO If no marks awarded, award SC2 for $\mathrm{x}=(£) 321000$ If B1 only previously awarded, replace with SC2 for $\mathrm{x}=(£) 321000$ Note: If a candidate uses x as being the amount over $£ 250000$, then award B0B0 followed by M1 for $1.05 x+180000+(1.035 \times 70000)=327000$ or equivalent A1 for $x=(£) 71000$ A1 for (£) 321000
	B1 B1 M1 m1 A1	May be embedded in their equation May be embedded in their equation No further marks unless an appropriate equation seen FT 'their 2700' AND 'their 0.05×255000 ' CAO If no marks awarded, award SC2 for $x=(£) 321000$ If B1 only previously awarded, replace with SC2 for $x=(£) 321000$ Note: If a candidate uses x as being the amount over $£ 255000$, then award BOBO followed by M1 for $1.05 x+180000+75000+2700=327000$ A1 for $x=(£) 66000$ A1 for (£) 321000

