шјес
cbac

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 1 (FOUNDATION) 3310U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE Mathematics - Numeracy Unit 1: Foundation Tier Summer 2017	Mark	Comment
1(a) (£)125000		

$\begin{aligned} & \text { 2(c) } 3 \times 3 \times 200 \text { or } 30 \div 10 \times 200 \times 3 \\ & 1800(\mathrm{p}) \text { or (£) } 18(.00) \end{aligned}$	M2	Award M1 for sight of 3×3 or 9 (cost of 1 biscuit) or 3×200 or 600 (pence per $10 \mathrm{~cm}^{2}$ across 200 biscuits) or 30×200 or 6000 (total surface area) CAO Allow A1 for £18.00p Award AO for $£ 1800$ or 18 p or 18.00 p Watch for a method of $3 \times \underline{\mathbf{3 0} \times 200}$ or $3 \times 30=90$ and then $90 \times 200=(£) 180$ or 18000 (p). This would gain M1 only The answer must come from a correct method not from a place value error e.g. $18000 \mathrm{p}=£ 18$
3(a)(i) 3 (miles)	B1	Accept any indication of 3 miles such as 3.00 (miles)
3(a)(ii)1 hour 56 minutes 33 seconds	B1	$\begin{aligned} & \text { Accept any indication of correct time e.g } \\ & 1: 56: 33,15633,1.56 .33 \end{aligned}$
$\begin{array}{ll}\text { 3(b) } & \\ \text { TRUE } & \text { FALSE } \\ \text { TRUE } & \\ & \\ & \text { FALSE }\end{array}$	B2	Award B2 for all correct Award B1 for 3 correct
3(c) 9 minutes (and) 31 seconds	B1	Allow 931 or 9:31 or 9.31 or 9 mins 31 or 9 31secs or 09:31 or 09.31 Do not accept 9.31 mins or 9.31 secs

4(b) £37.60	B1	
5. (potatoes for 6 people $=$) 30 (ounces) (potatoes for 6 or 30 ounces =) 30×28 $\text { = } 840 \text { (grams) }$ (Scale reading =) 480 (grams) (Need 840-480 =) 360 (grams)	B1 M1 A1 B1 B1	FT 'their 30 ounces' (including 10 ounces) FT 'their 840 ' and 'their 480' provided FT answer >0 Alternative method for the first 3 marks: (potatoes for 2 people or 10 ounces $=10 \times 28$) $=280$ (grams) B1 (potatoes for 6 people or 30 ounces=) 280×3 M1 FT 'their $10 \times 28^{\prime} \times 3$ for M1 and possible A1 if 'their 10×28 ' $\times 3$ correctly evaluated. 840(grams) A1 Alternative method for the first 3 marks: (potatoes for 1 person or 5 ounces $=5 \times 28$) (potatoes for 6 people or 30 ounces $=$) $=140 \text { (grams) B1 }$ 140×6 M1 FT 'their 5×28 ' $\times 6$ for M1 and possible A1 if 'their 5×28 ' $\times 6$ correctly evaluated. 840(grams) A1
$\begin{aligned} & \text { 6. } \begin{array}{rlllllll} 3 & 6 & 7 & 9 & 10 & 10 & 11 \text { (cars) } \\ 3+6+7+9+10+10+11 \text { and } \div 7 \\ 8 \text { (cars) } \end{array} \end{aligned}$	B2 M1 A1	Need not be in this order B1 for sight of (11-8 =) 3 (cars) and at least two 10s FT intention to sum 'their 7 numbers' and divide by 7 , must be 7 numbers CAO, i.e. FT is only for the method mark If no marks, award SC1 for an unsupported answer of ' 8 '

7(a)	B1	
7(b)	$15: 30 \mathrm{~km}$	B1
7(c) Indicates or implies 'can't tell', with a reason suggesting, e.g. 'don't know in which direction they travel', 'could be (up to) 14 km apart', 'the graph only says distance from home'	E1	

9. $\begin{aligned} & a=72^{\circ} \text { and } c=94^{\circ} \\ & b=108^{\circ} \\ & \quad d=86^{\circ} \end{aligned}$ Correct diagram within $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$ tolerances	B1 B1 B1 B3	If contradiction between diagram and answer space, mark the answer space, except if a transition slip FT 180 - 'their a' FT 180 - 'their C^{\prime} Ignore extensions of lines in construction, mark the quadrilateral Attempt (FT) using template irrespective of angles stated B2 for diagram with either of : - $6 \mathrm{~cm} \pm 2 \mathrm{~mm}$ and $\mathrm{a}=72^{\circ} \pm 2^{\circ}$ and either $\mathrm{b}=108^{\circ} \pm 2^{\circ}$ or $\mathrm{d}=86^{\circ} \pm 2^{\circ}$ - all correct angles $\pm 2^{\circ}$ with 6 cm incorrect B1 for $6 \mathrm{~cm} \pm 2 \mathrm{~mm}$ and $a=72^{\circ} \pm 2^{\circ} \text { or } d=86^{\circ} \pm 2^{\circ}$
$\begin{aligned} & 10(\mathrm{a})(10+20+30) \times 0.6 \text { or } 60 \times 0.6 \\ & \text { or }(10+20+30) \times 60 \div 100 \end{aligned}$ (£)36	M1 A1	Allow intention of brackets i.e. $10+20+30 \times 0.6$ CAO and must be from correct working If no marks, award SC1 for an answer of 3600(p), not for $£ 3600$
$\begin{aligned} 10 \text { (b) } 10 \times 20 \times 30 & (=6000) \\ & \times 0.01 \text { or }(\times 1) \div 100 \end{aligned}$ (£)60	M1 m 1 A1	An answer of $£ 6000$ implies M1 only Depends on previous M1 Award of m 1 implies previous M1 CAO If M1 m0 A0 also award SC1 for an answer of 6000 p
$\begin{array}{r} 10(\mathrm{c}) 2 \times\{(10 \times 20)+(20 \times 30)+(10 \times 30) \\ (=2200) \\ \\ \times 0.02 \text { or } \times 2 \div 100 \\ (\mathcal{E}) 44 \end{array}$	$\begin{aligned} & \text { M2 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	M1 for sight of sum of at least 2 of the 6 possible products: $10 \times 20,20 \times 30,10 \times 30$ Depends on M2 or M1 previously awarded CAO If M2 m0 A0, also award SC1 for an answer of 4400 (p), not for $£ 4400$
11 (a) (Needs a further) 11 (squares)	B2	B1 for sight of $6+5+4+3+2+1$ or 21squares
11(b)(States or implies 'correct' with sight of, e.g. - $10+9+8+7+6+5+4+3+2+1$, or - ... 21, 28, $36,45,55$, or - $. . .+7,+8,+9,+10$ - $5 \times(10+1)$	B1	CAO Do not accept any contradictions, e.g. an incorrect answer for the correct sum, i.e. $10+9+8+7+6+5+4+3+2+1$ with an answer other than 55 Allow 'correct' with D10 diagram drawn in the answer space

шјес
cbac

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 2 (FOUNDATION) 3310U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE Mathematics - Numeracy Unit 2: Foundation Tier Summer 2017	Mark	Comment
1.(a) 50 (miles)	B1	
(b) $5 \times 2 \times 50$ 500 (miles)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their 50' If no marks awarded, award SC1 for 250 (miles), or an accurate answer to $5 \times$ 'their 50 ' or $7 \times 2 \times$ 'their 50 '
(c) (alternative route distance=) $45+36$ 81 (miles)	M1 A1	Abergavenny to Gloucester 45(miles) Gloucester to Bristol 36 (miles) Addition of two distances from the table, with at least one of 45 and 36 included. CAO. Unsupported 81 gets M1 A1. Sight of (extra distance per day $=81-50=$) 31 or a value for 81 - 'their 50 ' implies M1A1
(extra distance=) $(81-50) \times 2$ or equivalent.	M1	FT 'their 50' if first M1 awarded and 'their 81' providing first M1 awarded and 'their 81' > 'their 50'
$=62$ (miles)	A1	FT if first M1 awarded. If last M1 not awarded, award SC1 for 31 (miles) ISW

$\begin{aligned} & \text { 2(a)(i) } \\ & \text { (Total cost }=\text {) } \\ & \text { (£) } 39.99+2 \times 11.98+3 \times 2.99 \\ & =(£) 72.92 \end{aligned}$	M2 A1	M1 for an attempt to add any two of the three required costs. FT provided M1 awarded If no marks awarded Sc1 for ($£$)54.96 from (£)39.99+(£)11.98 + (£)2.99
2(a)(ii) (Gwyn's current order total cost =) $(96.62+6.99)$ $=(£) 103.61$ (Gwyn's order plus socks total cost $=$) $\begin{aligned} & (96.62+2 \times 2.99) \\ & =(£) 102.6(0) \end{aligned}$ 'Lower cost as no delivery charge' (yet more items ordered) 'If he didn't buy the socks, the delivery charge would apply which is more than the cost of the socks'.	B1 B1 E1	B2 'Gwyn makes a saving of (£)1.01’ Allow for E1 Statements indicating 'free delivery' or reference to cost of socks. Calculations with words that 'reference the delivery cost OR cost of socks'. Do NOT allow for E1 Calculations without any reference or explanation. 'because it will be cheaper by $£ 1.01$ ' with no further comment. Ignore incorrect statements regarding savings, along with a correct answer e.g. He saves $£ 1.1$ because of the free delivery charge. Alternative: Stating ($2 \times 2.99=$) (£) 5.98 makes the total greater than £100. B1 Compare (£)6.99 and (£)5.98 B1 Lower cost as no delivery charge (yet more items ordered) E1
2(b)(i) (£)168	B1	
$\text { 2(b)(ii) } 15 / 100 \times 200$ (£)30 and a statement that he is correct	M1 A1	Or equivalent method $32 / 200(\times 100 \%)$ Or 16% and a statement that he is correct.
2(b)(iii) 43(\%)	B1	
2(c) Ordering at least one set of data (David) 1112578 (Gwyn) 11124612 At least one median is 2 A comment explaining that the medians are the same.	M1 A1 E1	E0 for unsupported comments.

3 (a) A Cuboid B Cylinder	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
$\begin{aligned} & \text { (b)(i) } \frac{3 \times 270}{5} \\ & \\ & \\ & 162(\mathrm{~g}) \end{aligned}$	M1 A1	If no marks awarded SC1 for $(3 \times 270)=810 \text { or }\left(\frac{270}{5}\right)=54$
(b)(ii) 100	B2	Award B1 for 2×120 or $240 \div 2$ or use of 50 and a relationship between 120 and 240 e.g. $50 \div 2=25$. Do not award B1 for 25 unsupported.
(c) A correct net of a cube with 6 faces. Lengths of sides of squares 3 cm	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	SC1 for the net of an open box. 5 faces of correct size. Ignore the inclusion of 'tabs'.
(d) (Total cost of 20 candles and boxes) $(2.35+(0) 15) \times 20=$. (£) 50	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or equivalent CAO May be implied in further work.
(Profit is $£ 84-£ 50=$) (£) 34.	B1	Or equivalent FT 'their (£) 50 ' provided 20 is used with candles or boxes and 'their $(£) 50<(£) 84$.
Organisation and communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing - Consistent use of $£$ and p . - Correct use of = sign.	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

4(a) 09:12	B1	
4(b) 14:55 or 2:55 p.m. or 'five to three'	B2	For B2 allow indicates 14(:)00 bus with 5 minutes to spare Accept times given in 24hr or a.m. format throughout. Allow 2(:)55, 2 (:)55 p.m. and 14(:)55p.m. Do not allow 2:55 a.m. or 02:55 B1 for idea to look at multiples of 24 minutes from 12 noon, with at least: (12(:)24, $12(:) 48$ and) $13(:) 12$ seen or 1(:) 12 p.m., OR $60 \div 24=2.5$, OR next bus on the hour is $14(:) 00$, OR catches $14(:) 00$ bus, 2 p.m. bus, or 2 o'clock bus Allow B1 for the time sequence 12(:)24, $12(:) 48$ with $1(:) 12$, but do not allow with 1 (:) 12 a.m. Allow use of decimal point, a gap, no gap as a 'spacer' in time throughout
$\begin{array}{cccc}\text { 5. } & 0.4(0) \times 65 & \text { or } & (100 \times) 28 / 65 \\ & 26 \text { (days) } & \text { or } & 43(.07 . . \%)\end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow sight of $65 \times 40 \% \div 100$ If $43(\ldots \%)$ not shown, accept sight of $0.43 \ldots$ with $0.4(0)$ Accept sight of $26 / 65$ for M1, A1 Accept without units, however, if units are given they must be correct Must follow from correct working, unless unsupported (- check if a partitioning method is correct for find finding \%) Allow a slip in further working following award of M1, A1 provided it does not impact on the conclusion
Conclusion e.g. 'Luigi is correct (as 43\% > 40\%)', 'Luigi is correct (as it only rained on 26 days in west Wales)', 'Luigi is correct' (sight of $\frac{28}{65}$ and $\frac{26}{65}$)	E1	Depends on M1 previously awarded, FT only provided: 'their 43\%' > 40\% or 'their 26 days' < 28 days Accept an answer 'Luigi is correct' if units are given correctly in workings, with like with like comparison Alternative (considering did not rain) (Did not rain for Luigi 65-28) 37 (days), FT 'their 65-28' $\begin{array}{ll} 0.6(0) \times 65 \text { or }(100 \times 37 / 65 & \text { M1 } \\ 39 \text { (days) or } 56.9(\ldots \%) \text { or } 57(\%) & \text { A1 } \\ \text { Conclusion, e.g. } & \\ \text { 'Luigi is correct (as } 57 \%<60 \%) & \text { E1 } \\ \text { Depends on M1 previously awarded } & \\ \text { FT provided: } & \\ \text { 'their } 39 \text { days' }>37 \text { days or } & \\ \text { 'their } 56.9 \% \text { ' }<60 \% & \end{array}$

$\left.\begin{array}{|l|c|l|}\hline 6 \text { (a) } 20 \% & \text { B1 } & \\ \hline 6 \text { (b) 38\% } & \text { B1 } & \\ \hline \begin{array}{l}\text { 6(c) States or implies 'No' AND gives a } \\ \text { reason, e.g. } \\ \text { 'Don't know how many members there } \\ \text { are in total', } \\ \text { 'Hadon's Gym could be a very small } \\ \text { gym', } \\ \text { 'Workout Palace could be a very large } \\ \text { gym', } \\ \text { 'because it does not say how many } \\ \text { people are in either gym', } \\ \text { 'we don't know about the number of } \\ \text { people', } \\ \text { 'it doesn't tell us how many men in the } \\ \text { gyms' }\end{array} & \begin{array}{l}\text { Ignore further spurious or irrelevant } \\ \text { explanation if 'no' selected or } \\ \text { unambiguously implied }\end{array} \\ \text { Allow, e.g. } \\ \text { 'don't know because there are no } \\ \text { numbers to indicate that there are more } \\ \text { men', } \\ \text { Do not accept, e.g. } \\ \text { 'there is about the same number of men } \\ \text { as women in both gyms', } \\ \text { 'there are fewer children in Hadon's gym } \\ \text { so that means the percentage of men } \\ \text { goes up', } \\ \text { 'we don't know the percentages', } \\ \text { 'they asked different people' }\end{array}\right\}$

\begin{tabular}{|c|c|c|}
\hline \(8(\mathrm{a}) 42 \times 31 / 2 \mathrm{l}\) \& \[
\begin{aligned}
\& \mathrm{M} 1 \\
\& \Delta 1
\end{aligned}
\] \& Do not accept \(42 \times 3.3\) or \(42 \times 210\) \\
\hline \begin{tabular}{l}
8(b) Reason, accept any reasonable response based on information given not being totally accurate, e.g. 'traffic could be different', 'doesn't mean Glenda's average speed for the Flint to Cardiff journey will be 42 mph', \\
' \(31 / 2\) hours might have been given to the nearest \(1 / 2\) hour', \\
'might not have been exactly \(31 / 2\) hours', 'average speed could be different', 'only know the average speed for one journey'
\end{tabular} \& E1 \& \begin{tabular}{l}
Do not credit a correct reason if a contradiction is given \\
Allow, e.g \\
'she could drive faster (or slower)', 'she may have gone a longer route', 'she may have taken a shorter route', 'we don't know how long she will take this time', \\
'she could drive faster and get there in less time', \\
'because the calculation was the average distance', \\
Do not accept the idea that this journey was at an average speed of 42 mph but that her speed changed during her journey, \\
e.g. \\
'it was her average, she might have gone faster for a while and slower for a while', 'her speed may have changed over her journey', \\
'she could have stopped on the journey', 'I don't know the exact distance', '42 mph means she would have to be travelling at this speed all the way', \\
Do not accept 'only know the average speed'
\end{tabular} \\
\hline 9(a) 1125 g \& B1 \& \\
\hline 9(b) \(\frac{5 \times 428-160}{9}\)
\[
220\left({ }^{\circ} \mathrm{C}\right)
\] \& M1

A1 \& | Needs to show intention to calculate 5×428 |
| :--- |
| These answers imply MO, AO |
| - ($5428-160) \div 9=)$ 585.33... |
| - $(5428-160 \div 9=) \quad 5410.22 \ldots$ |
| CAO |

\hline
\end{tabular}

10(a) 172.5 (miles per hour)	B1	ISW
10(b) Alun 23 (miles per hour) Nikita $20 \times 1150.779 \div 1000$ or $1150.779 \div 50$ or equivalent 23.01 (558..) or 23.02 (miles per hour) Difference 0.02 (miles per hour to 2 d.p.)	B1 M1 A1 B1	CAO Alternative Sight of difference 0.000779 B1 Difference $=0.000779 \times 20$ M1 $=0.01(558)$ A1 $0.02 \mathrm{mph}(2 \mathrm{dp})$ B1CAO
11(a)(i) 5	B1	
11(a)(ii) (At least) 28 (pupils)	B1	
11(a)(iii) Assumption stated e.g. 'no one was absent', 'all pupils present on the test day', 'everyone in the class took the test that day'	E1	Needs to show understanding that the number of pupils doing the test may not be the number of pupils in the class Do not accept a description of the method, e.g. 'adding the number of test scores gives the number of pupils', 'used the number of test marks', 'used the numbers who did the test', UNLESS the candidate continues to state an assumption
11(b) Catrin 'incorrect' selected or unambiguously implied with a reason, e.g. '(18 Year 9 pupils but) only 4 Year 10 pupils scored 9 or higher', 'only 2 Year 10 pupils scored 10 or higher', 'more pupils with higher marks in Year 9', '18 pupils in Year 9 scored >8, compared with only 4 pupils in Year 10'	E1	If numbers are given within a reason they must be correct Accept a response based on the means, with mean for Year 9 as 7.46.. and Year 10 is 7.38 .. If 'incorrect' selected or unambiguously, allow e.g. 'the mode for Year 10 is 8 (marks), but the mode for Year 9 is 9 (marks)', 'Year 9 mode is higher at 9 (marks)', Do not accept, e.g. 'the highest score in Year 9 is 12, whereas only 10 in Year 10', 'Year 9 had 2 pupils with full marks', 'Some pupils in Year 9 had full marks' Alternative: Catrin 'correct' with a clear reason based on the majority of higher scores, e.g. 'Yr10 20 people scored 8 or more, Yr9 18 people scored 8 or more' Note: Unless the mode is considered, there must be comparison of a range of marks

шјес
cbac

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 1 (INTERMEDIATE) 3310U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE Mathematics - Numeracy Unit 1: Intermediate Tier Summer 2017	Mark	Comment
$\begin{aligned} & \text { 1. } \begin{array}{rllllll} 3 & 6 & 7 & 9 & 10 & 10 & 11 \text { (cars) } \\ 3+6+7+9+10+10+11 \text { and } \div 7 \\ 8 \text { (cars) } \end{array} \end{aligned}$	B2 M1 A1	Need not be in this order B1 for sight of (11-8 =) 3 (cars) and at least two 10s FT intention to sum 'their 7 numbers' and divide by 7 , must be 7 numbers CAO, i.e. FT is only for the method mark If no marks, award SC1 for an unsupported answer of ' 8 '
2(a) 15:30	B1	
2(b) 16 km	B1	
2(c) Indicates or implies 'can't tell', with a reason suggesting, e.g. 'don't know in which direction they travel', 'could be (up to) 14 km apart', 'the graph only says distance from home'	E1	Ignore spurious additional information. Allow 'can't tell' with e.g. 'one sister takes a different route', 'different roads taken', 'one sister changed direction', ‘could be 9 km apart', 'Eleri may have taken a longer route' Do not accept 'can't tell' with e.g. 'they don't leave from the same place', 'Yvon travels slower than Eleri', 'schools finish at different times', 'the graph shows distance from home not distance from school', 'not known if Yvon travels in a straight line'

3. (Tent ground area) 2.5×4.4 $=11\left(m^{2}\right)$	M1 A1	Allow for sight of 2(.)5(0) $\times 4() .4(0)$ Working of the ground area must be seen, i.e. sight of 2.5×4.4 not 2×4 or 3×4 CAO, not FT If no area calculation seen award $\mathrm{MO}, \mathrm{A} 0$ then FT for M and A marks, final mark E0
(Total cost for 12 nights, pay for 10 nights $=10 \times 14+2 \times 10 \times 4$	M2	FT 'their ground area $>12 \mathrm{~m}^{2}$ to calculation $10 \times 16+2 \times 10 \times 4$ (=£240) for M2 or equivalent M1 (see formula below) If incorrect interpretation of 'their ground area', award M1 only for either area $\leq 12 \mathrm{~m}^{2}$ with $10 \times 16+2 \times 10 \times 4$ ($=£ 240$), or area $>12 \mathrm{~m}^{2}$ with $10 \times 14+2 \times 10 \times 4(=£ 220)$, M1 for a sum of two products: $(2 \times) a \times b+(2 \times) 4 \times c$ where $\begin{aligned} & a=10,11 \text { or } 12 \\ & b=14 \text { or } 16 \\ & c=10,11 \text { or } 12 \end{aligned}$ The initial ($2 \times$) is if the error is 2 tents! For example: - $12 \times 14+2 \times 10 \times 4(=£ 248)$ - $10 \times 14+10 \times 4(=£ 180)$ - $12 \times 16+2 \times 12 \times 4(=£ 288)$ Ignore further working attempting to subtract discounts Working with the cost of 1 night, e.g. $14+2 \times 4$ or $16+2 \times 4$, ignore errors in calculation and award M2 or M1 as appropriate when attempt to multiply by 10,11 or 12 is seen, i.e work may be seen in stages
$(140+80=£) 220$	A1	CAO If previous M0, A0 for costs, award SC1 for sight of 1 night cost ($£$) 22 or for sight of 10×14 and $2 \times 10 \times 4$ without indication of addition
$($ Saving $=2 \times$) $8 \times 15 \quad$ (£) 240	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow M1 only 1 person saving CAO, not FT Alternative (How many weeks of saving) $220 \div(2 \times 15)$ M1 (FT 'their 220' for M1 only) 71⁄3 or 7.3(....)(weeks) A1 CAO If no marks, allow SC1 for 14.6(6... weeks) or 14.7 from $220 \div 15$ Or equivalent for working with cost per person, i.e. $1 / 2 \times 10 \times 14+10 \times 4=£ 110$ and saving $8 \times 15=£ 120$, all previous marks are available

Conclusion, e.g. 'planned saving is enough to pay for the holiday'	E1	FT comparison for 'their $£ 240$ saved' with 'their total cost', provided at least 2 M marks previously awarded one of which must be for area calculation Allow the conclusion 'yes'
Organisation and communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

$\begin{aligned} & 4(\mathrm{a})(\mathrm{i})(10+20+30) \times 0.6 \text { or } 60 \times 0.6 \\ & \text { or }(10+20+30) \times 60 \div 100 \end{aligned}$ (£)36	M1 A1	Allow intention of brackets i.e. $10+20+30 \times 0.6$ CAO and must be from correct working If no marks, award SC1 for an answer of 3600(p), not for £3600
$\begin{aligned} \hline 4 \text { (a)(ii) } 10 \times 20 \times 30 \quad(=6000) \\ \times 0.01 \text { or }(\times 1) \div 100 \end{aligned}$ (£)60	M1 m1 A1	An answer of $£ 6000$ implies M1 only Depends on previous M1 Award of m 1 implies previous M1 CAO If M1 m0 A0 also award SC1 for an answer of 6000p
$\begin{array}{r} 4 \text { (a) (iii) } \begin{array}{r} 2 \times\{(10 \times 20) \\ (=2200) \end{array}+(20 \times 30)+(10 \times 30) \\ \times 0.02 \text { or } \times 2 \div 100 \end{array}$ (£)44	M2 m1 A1	M1 for sight of sum of at least 2 of the 6 possible products: $10 \times 20,20 \times 30,10 \times 30$ Depends on M2 or M1 previously awarded CAO If M2 m0 A0, also award SC1 for an answer of 4400 (p), not for $£ 4400$
4(b) $\frac{60-36}{60} \quad(\times 100)$ $40 \text { (\%) }$	M1	Strict FT 'their most expensive' and 'their cheapest' If FT is not a whole number, then accept rounded or truncated to a whole number If no marks, award SC1 for an answer of $60(\%)$ from $36 / 60$ or 'their cheapest' 'their most expensive' expressed correctly as a percentage

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{lc}
5(\mathrm{a}) \text { (i) }(£) 560 \div 7 \& (=£ 80) \\
2 \times 560 \div 7 \quad \text { OR } \& 6 \times 560 \div 7 \text { OR } \\
1 / 3 \times(560-560 \div 7) \text { OR } \& 560-560 \div 7 \\
\text { (Bryn) (£) } 160 \& \\
\text { (Sophie) }(£) 480 \&
\end{array}
\] \& B1
M1
A1
A1 \& \begin{tabular}{l}
CAO \\
CAO \\
Alternative:(Total prize money) \\
If no marks, award SC1 only for either of the following answers (from initially 560 \(\div 15\)) \\
- (Bryn) (£)74(.66...) or (£)75 \\
- (Sophie) (£)222 or (£)223(.98) or (£) 224
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 5(a)(ii) } 560-0.15 \times 560 \text { or } 0.85 \times 560 \\
\& (=560-84)
\end{aligned}
\] \\
(£)476
\end{tabular} \& M1
A1 \& Or equivalent full method \\
\hline \begin{tabular}{lr}
5(b) (2015 cost of hosting:) \\
\(6600+0.1 \times 6600\) \& \((£ 7260)\) \\
(2016 cost of hosting:) \& \\
\(\quad 7260+0.1 \times 7260\) \& \((£ 7986)\) \\
AND \begin{tabular}{ll}
(2017 cost of hosting:) \\
\(7986+0.1 \times 7986\) \& \((£ 8784.60)\)
\end{tabular} \\
\\
(2017 cost of hosting is) \((£) 8784.6(0)\)
\end{tabular} \& B1
M1

A1 \& | For the appropriate method of repeatedly increasing by 10\% from 2015 to 2017 |
| :--- |
| FT 'their $6600+10 \%$ ' calculation with 'their 7260' $+10 \%$ calculation with their 7986' + 10\% calculation |
| Allow intention with sight of rounding or truncation within working, e.g. (£)799 as 10% of $(£) 7986$ |
| CAO |
| Ignore any further working |
| Alternative |
| Sight of $6600 \times 1.1^{3} \quad$ M1 |
| Full method to calculate 1.1^{3} and multiply |
| by 6600 |
| (For method not accuracy, allow arithmetic |
| errors if intention clear.) |
| (£) 8784.6(0) |
| CAO |
| If no marks, award SC1 for an answer of ($£$)8580 (from simple interest, as first B mark is embedded) |

\hline
\end{tabular}

6(a) 230	B1	
6(b) 40	B1	
6(c) Reason, e.g. 'graph for 18 -year olds leans towards the greater times', 'the frequency polygon for times from (the plot at) 30 minutes are greater for the 18 -year olds', 'more 18 -year olds spend longer times than 16 year olds', 'more 18 -year olds for 30 minutes, same at 40 minutes and more at 50 minutes', 'more 18 -year olds at 50 minutes', 'more 18-year olds from 25 minutes onwards', 'many more 16 -year olds than 18 -year olds spend 20 (or 25) minutes or less', 'median is higher for the 18 -year olds', 'more 16 -year olds use less time on social media than 18 -year olds'	E1	If readings are used they must be correct, e.g. at 50 minutes there are - 2016 -year olds and 6018 -year olds, - or 40 more 18 -year olds than 16 year olds - 3 times as many 18 -year olds spend 50 minutes as 16 -year olds Allow e.g. 'half way through the 18 -year olds frequency rises higher than for 16-year olds' Do not accept irrelevant, incorrect or incomplete statements e.g. 'more 18-year olds spend 30 minutes', 'more 16 -year olds spend 20 minutes', 'because more than 6018 -year olds spend 30 to 50 minutes', 'The mode for 16 -year olds using social media is the same as for 18 -year olds', '16-year olds frequency is higher to start', 'not true because the frequency polygons would look roughly the same', 'not true because the shapes of the frequency polygons are very different', 'there is only one point where 16 and 18year olds spend the same amount of time', 'because the polygons are not the same', 'the 2 polygons have different trends', 'the average time is greater for 18 -year olds'

7. $\begin{aligned} & a=72^{\circ} \quad \text { and } c=94^{\circ} \\ & b=108^{\circ} \\ & \quad d=86^{\circ} \end{aligned}$ Correct diagram within $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$ tolerances	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B3 } \end{aligned}$	If contradiction between diagram and answer space, mark the answer space, except if a transition slip FT 180 - 'their a' FT 180 - 'their c' Ignore extensions of lines in construction, mark the quadrilateral Attempt (FT) using template irrespective of angles stated B2 for diagram with either of : - $6 \mathrm{~cm} \pm 2 \mathrm{~mm}$ and $\mathrm{a}=72^{\circ} \pm 2^{\circ}$ and either $b=108^{\circ} \pm 2^{\circ}$ or $d=86^{\circ} \pm 2^{\circ}$ - all correct angles $\pm 2^{\circ}$ with 6 cm incorrect B1 for $6 \mathrm{~cm} \pm 2 \mathrm{~mm}$ and $\mathrm{a}=72^{\circ} \pm 2^{\circ} \text { or } d=86^{\circ} \pm 2^{\circ}$

8(a)(i) $2 \times 18 \times 1.1(0)$ or $1.1 \times 18 \div 0.5$ or equivalent (=£) 39.6(0)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Award M1 A1 for a correct response from an error in notation such as $18 \times 0.5=36 \text { with } 36 \times 1.1=(£) 39.6(0)$ Note: $18 \div 0.5=9,9 \times 1.1=(£) 9.9(0)$ is M1 A0 as full method shown in stages, but only if the full method is seen, not for an answer of ($£$)9.9(0)
8(a)(ii) (Length) 6 (m) AND (width) 3 (m)	B2	Accept in either order in the answer space B1 for any 1 of the following: - sight of $18 \div 3$ - sight of $18 \div 6$ - either length or width correct (any order) - answers $12(\mathrm{~m})$ and $6(\mathrm{~m})$ (any order) - $1 \mathrm{x}+2 \mathrm{x}+1 \mathrm{x}+2 \mathrm{x}=18$ or similar
8(b) $x+3+x+3+x+x=16$ or $x+3+x=8$ or equivalent $4 x+6=16$ or $4 x=16-6$ or $4 x=10$ or $2 x+3=8$ or equivalent (Length) 5.5 (m) and (width, x) 2.5 (m)	M1 m1 A1	Accept any variable for ' x ' Depends on the previous M1 This m 1 implies the previous M1 CAO Needs to be in the correct order in the answer space, or clearly labelled Alternative method to work with $y-3$ and y leading to $y=5.5$ If no marks, allow SC1 for answers of $5.5(\mathrm{~m})$ and $2.5(\mathrm{~m})$ if no equation given or if 'their equation' not used to elicit these answers, OR SC1 for answers of $9.5(\mathrm{~m})$ and $6.5(\mathrm{~m})$ from sight of $x+x+3=16$

9(a)(i) (Needs a further) 11 (squares)	B2	B1 for sight of $6+5+4+3+2+1$ or 21squares
9(a)(ii) States or implies 'correct' with sight of, e.g. - $10+9+8+7+6+5+4+3+2+1$, or - ... 21, 28, $36,45,55$, or - $. . .+7,+8,+9,+10$ - $5 \times(10+1)$	B1	CAO Do not accept any contradictions, e.g. an incorrect answer for the correct sum, i.e. $10+9+8+7+6+5+4+3+2+1$ with an answer other than 55 Allow 'correct' with D10 diagram drawn in the answer space
9(b)(i) 8	B1	
9(b)(ii) States or implies 'No' with a reason, e.g. 'all Josef's patterns have an odd number of squares', 'same number on each branch from the one top square makes it an odd number', 'one square left over', 'one square short', 'one more needed', 'the arms would be unequal (in length)', '22 is even', 'P10 is (made using) 21 (squares), P11 is (made using) 23 (squares)', 'he would only be able to make a pattern with 21 squares'	E1	Do not accept 'No' with, e.g. 'too many squares', '22 is not part of the pattern', 'it is unequal'
9(b)(iii) P4	B2	Allow $\mathrm{P}=4$ B1 for sight of $10 \div 0.5$ or 20 (small square edges) or shows 5 squares on each side (stated or diagram in the answer space for (b)(iii)) BO for P20 unless sight of $10 \div 0.5$ (which is awarded B1)

10(a) 45 (seconds)	B1	
10(b) 30	B1	
$\begin{array}{\|l\|l\|} \hline 10(\mathrm{c}) & 0.9(0) \times 70 \end{array}$ $=63$ (passengers) (In 60 seconds) 65 (passengers left) OR 63 passengers within (58 or) 59 seconds OR 63 (passengers) in less than 60 seconds Conclusion that the target was met	M1 A1 B1 E1	Ignore incorrect units Check the diagram for indication, provided values are written FT 'their 63' provided M1 previously awarded Depends on M1, B1 previously awarded Alternative: $\begin{array}{lr}\text { By } 1 \text { minute, } 65 \text { passengers left } & \text { B1 } \\ (100 \times) 65 / 70 & \text { M1 } \\ 0.92(8 \ldots) \text { or } 0.93 \text { or } 92(.8 \%) \text { or } 93(\%) & A 1 \\ \text { Conclusion that target met } & E 1\end{array}$ (Depends on M1, B1) Alternative: For candidates clearly considering the number of passengers left on the plane, must be evidence of this before awarding marks $(0.1 \times 70=)$ 7 (passengers left on the plane) B1 (After 1 minute) 70-65 M1 5 (passengers) A1 Conclusion that target met (Depends on M1, B1)
11(a) April	B1	
11(b) January	B1	
11(c)(i) January and February	B1	In either order
11(c)(ii) 43	B1	
$\begin{aligned} \hline \text { 11(d) } & \text { FALSE } \\ & \text { TRUE } \\ & \text { FALSE } \\ & \text { FALSE } \end{aligned}$	B2	B1 for any 3 correct responses

\begin{tabular}{|c|c|c|}
\hline 12(a) \(8 \times 10^{-5}\) \& B1 \& \\
\hline 12(b)(i) 30 (pieces of card) \& B2 \& \begin{tabular}{l}
If working is shown, it needs to be correct for the award of B2 \\
Do not accept final answer of 30 mm for B2 \\
B1 for: \\
\(3 \times 10^{-2}\) written as 0.03 (metres) or 3 cm or (\(0.03 \mathrm{~m}=\)) 30 mm \\
OR \\
for a calculation that could lead to a correct response, e.g.
\[
\begin{aligned}
\& 3 \times 10^{-2} \div 0.001 \text { or }\left(3 \times 10^{-2}\right) \div\left(1 \times 10^{-3}\right) \text { or } \\
\& 3 \times 10^{-2} \times 1000
\end{aligned}
\] \\
(Watch for compensating errors such as \(3 \times 10^{-2}=0.003,0.003 \times 1000=30\), this is awarded B1 for intention of \(3 \times 10^{-2} \times 1000\))
\end{tabular} \\
\hline \begin{tabular}{l}
12(b)(ii) Assumption, e.g. \\
'no gaps between pieces of card', 'all pieces of card completely touch', 'all pieces of card are (exactly) 1 mm thick'
\end{tabular} \& E1 \& \begin{tabular}{l}
Allow e.g. \\
'the thickness of each piece of card is the same', 'none of them are folded'
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{gathered}
\text { 12(c) Use of } 1 \text { tonne }=1000 \mathrm{~kg} \\
1000 \times 2.88 \times 10^{7} \div\left(7.2 \times 10^{9}\right) \\
\text { or } 1000 \times 28800000 \div 7200000000 \\
\text { or equivalent }
\end{gathered}
\] \\
4 (kg per person)
\end{tabular} \& B1
M2

A1 \& | For M2 any calculations used by the candidate (which may be seen in stages) need to be correct, unless replaced with a correct calculation, perhaps e.g. reverting back to correct standard form FT 'their 1000', provided a power of 10 and $\neq 1$ |
| :--- |
| M1 for $\left(2.88 \times 10^{7}\right.$ (tonnes) $) \div\left(7.2 \times 10^{9}\right)$, or $28800000 \div 7200000000$, including no attempt to change tonnes to kg or possible place value errors in converting from standard form, this could be implied within working |
| CAO |

\hline
\end{tabular}

шјес
cbac

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 2 (INTERMEDIATE) 3310U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme

GCSE Mathematics - Numeracy Unit 2: Intermediate Tier	Mark	Comment
1(a) 09:12	B1	
1(b) 14:55 or 2:55 p.m. or 'five to three'	B2	For B2 allow indicates 14(:)00 bus with 5 minutes to spare Accept times given in 24 hr or a.m. format throughout. Allow 2(:)55, 2(:)55 p.m. and 14(:)55p.m. Do not allow 2:55 a.m. or 02(:)55 B1 for idea to look at multiples of 24 minutes from 12 noon, with at least: (12(:)24, 12(:)48 and) $13(:) 12$ seen or 1(:)12 p.m., OR $60 \div 24=2.5, O R$ next bus on the hour is $14(:) 00$, OR catches 14(:)00 bus, 2 p.m. bus, or 2 o'clock bus Allow B1 for the time sequence 12(:)24, 12(:)48 with 1(:)12, but do not allow with 1(:)12 a.m. Allow use of decimal point, a gap, no gap as a 'spacer' in time throughout

$\begin{array}{cccc}\text { 2. } & 0.4(0) \times 65 & \text { or } & (100 \times) 28 / 65 \\ & 26 \text { (days) } & \text { or } & 43(.07 . . \%)\end{array}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow sight of $65 \times 40 \% \div 100$ If $43(\ldots \%)$ not shown, accept sight of $0.43 \ldots$ with $0.4(0)$ Accept sight of 26/65 for M1, A1 Accept without units, however, if units are given they must be correct Must follow from correct working, unless unsupported (- check if a partitioning method is correct for find finding \%) Allow a slip in further working following award of M1, A1 provided it does not impact on the conclusion
Conclusion e.g. 'Luigi is correct (as 43\% > 40\%)', 'Luigi is correct (as it only rained on 26 days in west Wales)', 'Luigi is correct' (sight of $\frac{28}{65}$ and $\frac{26}{65}$)	E1	Depends on M1 previously awarded, FT only provided: 'their 43% ' $>40 \%$ or 'their 26 days' < 28 days Accept an answer 'Luigi is correct' if units are given correctly in workings, with like with like comparison Alternative (considering did not rain) (Did not rain for Luigi 65-28) 37 (days), FT' 'their 65-28' $\begin{array}{lll} 0.6(0) \times 65 \text { or }(100 \times 37 / 65 & \text { M1 } \\ 39 \text { (days) or } 56.9(\ldots \%) \text { or } 57(\%) & \text { A1 } \\ \text { Conclusion, e.g. } & \\ \text { 'Luigi is correct (as } 57 \%<60 \%) & \text { E1 } \\ \text { Depends on M1 previously awarded } & \\ \text { FT provided: } & \\ \text { 'their } 39 \text { days' }>37 \text { days or } & \\ \text { 'their } 56.9 \% \text { ' }<60 \% & & \end{array}$

3(a) 20\%	B1	
3(b) 38\%	B1	
3(c) States or implies 'No' AND gives a reason, e.g. 'Don't know how many members there are in total', 'Hadon's Gym could be a very small gym', 'Workout Palace could be a very large gym', 'because it does not say how many people are in either gym', 'we don't know about the number of people', 'it doesn't tell us how many men in the gyms'	E1	Ignore further spurious or irrelevant explanation if 'no' selected or unambiguously implied Allow, e.g. 'don't know because there are no numbers to indicate that there are more men', Do not accept, e.g. 'there is about the same number of men as women in both gyms', 'there are fewer children in Hadon's gym so that means the percentage of men goes up', 'we don't know the percentages', 'they asked different people'
4(a) No correlation or none	B1	Accept a description, e.g. 'there is no relationship', 'no trend', 'height and mass do not depend on each other' Allow, e.g. 'not negative or positive' Do not accept, e.g. 'scattered', 'neutral', 'spread out', 'random', 'indirect', 'no pattern'
4(b) 55 cm	B1	

$5(\mathrm{a}) 42 \times 31 / 2 \mathrm{l}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Do not accept 42×3.3 or 42×210
5(b) Reason, accept any reasonable response based on information given not being totally accurate, e.g. 'traffic could be different', 'doesn't mean Glenda's average speed for the Flint to Cardiff journey will be 42 mph', ' $31 / 2$ hours might have been given to the nearest $1 / 2$ hour', 'might not have been exactly $31 / 2$ hours', 'average speed could be different', 'only know the average speed for one journey'	E1	Do not credit a correct reason if a contradiction is given Allow, e.g 'she could drive faster (or slower)', 'she may have gone a longer route', 'she may have taken a shorter route', 'we don't know how long she will take this time', 'she could drive faster and get there in less time', 'because the calculation was the average distance', Do not accept the idea that this journey was at an average speed of 42 mph but that her speed changed during her journey, e.g. 'it was her average, she might have gone faster for a while and slower for a while', 'her speed may have changed over her journey', 'she could have stopped on the journey', 'I don't know the exact distance', ' 42 mph means she would have to be travelling at this speed all the way', Do not accept 'only know the average speed'

\begin{tabular}{|c|c|c|}
\hline 6(a)(i) 1125 g \& B1 \&

\hline $$
6 \text { (a)(ii) } \frac{5 \times 428-160}{9}
$$
$$
220\left({ }^{\circ} \mathrm{C}\right)
$$ \& M1

A1 \& | Needs to show intention to calculate 5×428 |
| :--- |
| These answers imply MO, AO |
| - ($(5428-160) \div 9=)$ 585.33... |
| - $(5428-160 \div 9=) \quad 5410.22 \ldots$ |
| CAO |

\hline $$
\begin{aligned}
& 6(\mathrm{~b})(\mathrm{i}) \\
& 1 / 2 \times 12 \times(15+20) \quad 210\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& Accept working seen in (b)(ii)

\hline $$
\begin{aligned}
& \text { 6(b)(ii) } \\
& 210 \div 65 \quad(=3.23 \ldots) \\
& \text { OR } 4 \times 65(=260) \\
& \text { OR } 65+65+65+65(=260) \\
& \text { OR equivalent } \\
& 4 \text { (packets) } \times 1.35
\end{aligned}
$$ \& M1

m1

A1 \& | Accept working may be seen in (b)(i) |
| :--- |
| FT 'their 210' provided > 130 |
| Sight of $3 \times 65=195$ and 4 packets is selected implies M1 |
| Depends on the award of the previous M1 |
| FT 'their 210 ' $\div 65$ provided |
| - \neq whole number and |
| - evaluation rounded up to a whole number |
| FT provided rounding up was necessary for the number of packets |
| Allow £5.4(0)p |

\hline 6(b)(iii) Yes (indicated or implied) AND showing at least 4 of the given shape to make 360° \& E1 \& | The 4 shapes may include the one given |
| :--- |
| Accept intention of congruent shapes and straight lines (use of a ruler is not required) |
| Allow if intention is clear, but free hand size of the congruent shapes changes, or if shapes don't quite touch (as it is being shown how they would be placed, i.e. slight gaps as if the shapes were tiles with grouting), or showing intention of 4 shapes meeting at a point (allow some drift in adding extra tiles) |
| Do not accept a line of shapes without the 360° |
| The shape must clearly not be a square or rectangle. |

\hline
\end{tabular}

$\left.\begin{array}{|l|c|l|}\hline \text { 8(a)(i) 5 } & \text { B1 } & \\ \hline \text { 8(a)(ii) (At least) } 28 \text { (pupils) } & \text { B1 } & \\ \hline \begin{array}{l}\text { 8(a)(iii) Assumption stated e.g. } \\ \text { 'no one was absent', } \\ \text { 'all pupils present on the test day', } \\ \text { everyone in the class took the test that } \\ \text { day' }\end{array} & \text { E1 } & \begin{array}{l}\text { Needs to show understanding that the } \\ \text { number of pupils doing the test may not } \\ \text { be the number of pupils in the class } \\ \text { Do not accept a description of the } \\ \text { method, e.g. }\end{array} \\ \text { 'adding the number of test scores gives } \\ \text { the number of pupils', } \\ \text { 'used the number of test marks', } \\ \text { 'used the numbers who did the test', } \\ \text { UNLESS the candidate continues to } \\ \text { state an assumption }\end{array}\right\}$

9(a) Perpendicular bisector drawn: Wrexham and Aberporth	B1	Tolerance $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$
Caernarfon and Swansea	B1	Tolerance $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$
Circle with radius $2 \mathrm{~cm} \pm 2 \mathrm{~mm}$ (20 miles) centred at the intersection of the perpendicular bisectors	B1	Independent mark FT from the intersection of 'their 2 straight lines', i.e. following previous B0 B0
Correct region in Wales identified, from arc radius equivalent to $2 \mathrm{~cm} \pm 2 \mathrm{~mm}$ (20 miles)	B1	Independent mark FT provided 'their region' (arc of a circle) spans Wales and England to give a similar region which excludes England The region should not include England, shading or indicating the full circle is B0 (Common incorrect response: A circle of the correct radius drawn with the centre at the intersection of straight lines joining Wrexham with Aberporth and Caernarfon with Swansea is awarded B0 B0 B1 B0)

10. $850 \times$$0.76(=£ 646)$ or equivalent $\times 0.87^{6}$ or equivalent$(£) 280(.1225 \ldots)$	M1 M1 A1	M1 marks can be awarded in either order (Note: If calculated first $850 \times 0.87^{6}=$ £368.58(22...) Accept answers in the inclusive range (£)280 to (£)281 Award M1, SC1 for an answer $\left(850 \times 0.76 \times 0.87^{7}=£\right)$ in the inclusive range (£)243 to (£)244
11. Sight of any 2 of: $25.5,36.5,47.5$ OR sight of $25+36+47+1.5$ or equivalent Greatest 109.5 (cm) or 109.499999... (cm)	B1 B1	Do not accept '. 49 ' instead of '.5', but allow '. 49 recurring' CAO, must be from correct working, or unsupported Allow an answer of 110(cm) from sight of 109.5(cm) Do not accept 109.49 (cm)
```Statement e.g. '(not safe as) too far (from the foot of the cliff)', 'too far out at sea'```	$\begin{gathered} \mathrm{M} 2 \\ \mathrm{~A} 1 \\ \mathrm{E} 1 \end{gathered}$	M1 for $\tan ($ angle of elevation) $=146 / 180$   FT 'their acute angle' provided at least M1 previously awarded, with   - $<42^{\circ}$ being too far out, or   - $\quad>45^{\circ}$ too near the cliff, or   - between these angles it is safe   Alternative for $M$ marks, e.g.:   $\sin ($ elevation $)=146 \quad(=\underline{146}$ $\sqrt{ }\left(180^{2}+146^{2}\right)\left(=\frac{146}{231.767 . .)}\right.$   OR $\cos (\text { elevation })=\frac{180}{\sqrt{\left(180^{2}+146^{2}\right)}}$   $\sin ^{-1} 0.62994 \ldots$. OR $\cos ^{-1} 0.7766 \ldots \quad M 1$   If no marks:   Award SC1 for an answer of $50.95 \ldots{ }^{\circ}$ or $51^{\circ}$ AND 'too near'


$\begin{aligned} & \text { 13(a) }\left(\text { Length }^{2}=44^{2}-16^{2}\right. \text { or } \\ & 44^{2}=\text { Length }{ }^{2}+16^{2} \\ & \text { (Length }=) \sqrt{ } 1680 \text { or Length } \\ & =1680 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	2 sig.fig. is required   A1 for $41.0,41.00$ or $40.9878 \ldots$ rounded or truncated   FT from M1 for the correctly evaluated square root of 'their 1680' provided 'their answer' < 44 (inches) for possible A2 or A1
$\text { 13(b) }(100 \times) 710.40 \div 74$   (£)960	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
13(c)(i) 23.52 p	B1	
13(c)(ii) 27.44 p	B1	
14. (Old fish tank contains) $60 \times 40 \times 45$   (New fish tank maximum volume is) $\pi \times 25^{2} \times 70$   Answer in range 137375 to $137500\left(\mathrm{~cm}^{3}\right)$   Conclusion, e.g. $\text { ' } 137375>108000 \text { ', }$   'Elin can be certain as the volume of the new tank is greater' 'it fits'	B1   M1   A1   B1	$\left(108000 \mathrm{~cm}^{3}\right)$   FT 'their new fish tank calculation' conclusion provided $108000\left(\mathrm{~cm}^{3}\right)$ seen and at least M1 previously awarded   Alternative:   (To find new fish tank water level)   (Old fish tank contains) $60 \times 40 \times 45$ B1 (New tank) $\pi \times 25^{2} \times$ 'water level' M1 $60 \times 40 \times 45=\pi \times 25^{2} \times$ 'water level' $^{\prime} \quad m 1$ (Water level) 55.(...cm) with conclusion that contents will be certain to fit ( 55 cm must be correct) Depends on all previous marks awarded

\begin{tabular}{|c|c|c|}
\hline 15(a) Method of systematic sampling, e.g. '(select one person from the first 12 people at random then) ask every \((240 \div 20=)\) 12th person' \& E1 \& \begin{tabular}{l}
Note to markers: \\
There should really be mention of the first person being selected at random, however in this first assessment, with only 1 mark available, not doing so will be condoned in this mark scheme
\end{tabular} \\
\hline \begin{tabular}{l}
15(b) Mid points 20.4, 21.3, 22.2, 23.1
\[
\begin{aligned}
\& 20.4 \times 2+21.3 \times 3+22.2 \times 10+23.1 \times 5 \\
\& (=40.8+63.9+222+115.5=)
\end{aligned}
\] \\
(Sum of 20 hand spans is) \(442(.2 \mathrm{~cm}\) ) \\
(Sum of all 30 hand spans is) \(10 \times 22.8+442(.2)(=670(.2) \mathrm{cm})\)
\[
22(.34 \mathrm{~cm})
\]
\end{tabular} \& B1
M1
A1

M1

m1

A1 \& | FT 'their mid points' provided they are all within or at the bounds of the appropriate groups |
| :--- |
| OR estimate of the mean |
| $(442.2 \div 20=) 22(.11 \mathrm{~cm})$ |
| May be implied in further working |
| OR $10 \times 22.8+20 \times 22(.11)$ |
| FT 'their derived 442.2' provided the correct method seen, including where one of 'their mid points' was outside the group |
| Intention to divide the sum of 30 measurements by 30 |
| Depends on M1, M1 and m1 previously awarded |
| (Watch for an answer 22(.. cm) from $\frac{22.1(1)+22.8}{2}$, award B1M1A1M0m0A0) | <br>

\hline 15(c) Improvement suggestion, e.g. 'ask more people', 'take a bigger sample', 'ask every $5^{\text {th }}$ person instead', 'collect more data (from different regions in Wales)', 'use all the raw data', 'do both hands', 'stratified sample on age', 'stratified sample on gender', 'by narrowing the groups in the table' \& E1 \& | Allow, e.g. 'ask people of different ages' |
| :--- |
| Do not accept, e.g. 'measure more accurately' | <br>

\hline
\end{tabular}

16. $A B$ or $A C=2.5 \div \cos 52^{\circ}$   OR $A B$ or $A C=2.5 \div \sin 38^{\circ}$   OR $A B$ or $A C=4(.06067 \ldots m)$	M2	M1 for any of the following   - $\cos 52^{\circ}=2.5 / \mathrm{AB}$   - $\cos 52^{\circ}=2.5 / \mathrm{AC}$   - $\sin 38^{\circ}=2.5 / \mathrm{AB}$   - $\sin 38^{\circ}=2.5 / \mathrm{AC}$   - equivalent full method without $A B$ or $A C$ as the subject
Total length $2 \times 4(.06067 \ldots) \quad(+6)$	m1	FT 'their derived $A B$ or $A C$ ' provided M1 awarded
14(.12... metres)	A1	FT from M1, m1 previously awarded
Cost per metre is $410 \div 14(.12 \ldots)$	m1	FT from 'their total length' for m1 only Depends on previous M1
(£)29(.03...)	A1	CAO, i.e. (£)29.(...)   (Note: $410 \div 14=£ 29(.285 \ldots$ )   Accept an answer that would round to   (£)29 from correct working

шјес
cbac

## GCSE MARKING SCHEME

## SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 1 (HIGHER) 3310U50-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.


Writing		


3(a) (Length) 6 (m) AND (width) 3 (m)	B2	Accept in either order in the answer space B1 for any 1 of the following:   - sight of $18 \div 3$   - sight of $18 \div 6$   - either length or width correct (any order)   - answers $12(\mathrm{~m})$ and 6 ( m ) (any order)   - $1 \mathrm{x}+2 \mathrm{x}+1 \mathrm{x}+2 \mathrm{x}=18$ or similar
3(b) $x+3+x+3+x+x=16$ or $x+3+x=8$ or equivalent   $4 \mathrm{x}+6=16$ or $4 \mathrm{x}=16-6$ or $4 \mathrm{x}=10$ or $2 x+3=8$ or equivalent   (Length) 5.5 (m) and (width, x) 2.5 (m)	M1 m1 A1	Accept any variable for ' $x$ '   Depends on the previous M1   This m1 implies the previous M1   CAO   Needs to be in the correct order in the answer space, or clearly labelled   Alternative method to work with $y-3$ and $y$ leading to $y=5.5$   If no marks, allow SC1 for answers of $5.5(\mathrm{~m})$ and $2.5(\mathrm{~m})$ if no equation given or if 'their equation' not used to elicit these answers, OR SC1 for answers of $9.5(\mathrm{~m})$ and $6.5(\mathrm{~m})$ from sight of $x+x+3=16$
4(a) 8	B1	
4.(b) States or implies 'No' with a reason, e.g. 'all Josef's patterns have an odd number of squares',   'same number on each branch from the one top square makes it an odd number', 'one square left over', 'one square short', 'one more needed', 'the arms would be unequal (in length)', '22 is even', 'P10 is (made using) 21 (squares), P11 is (made using) 23 (squares)', 'he would only be able to make a pattern with 21 squares'	E1	Do not accept 'No' with, e.g. 'too many squares', '22 is not part of the pattern', 'it is unequal'
4(c) P4	B2	Allow $\mathrm{P}=4$   B1 for sight of $10 \div 0.5$ or 20 (small square edges) or shows 5 squares on each side (stated or diagram in the answer space for (c)) B0 for P20 unless sight of $10 \div 0.5$ (which is awarded B1)

\begin{tabular}{|c|c|c|}
\hline 5(a) 45 (seconds) \& B1 \& \\
\hline 5(b) 30 \& B1 \& \\
\hline \begin{tabular}{l}
\[
\text { 5(c) } 0.9(0) \times 70
\] \\
\(=63\) (passengers) \\
(In 60 seconds) 65 (passengers left) \\
OR \\
63 passengers within ( 58 or) 59 seconds OR \\
63 (passengers) in less than 60 seconds \\
Conclusion that the target was met
\end{tabular} \& M1
A1
B1

E1 \& | Ignore incorrect units |
| :--- |
| Check the diagram for indication, provided values are written |
| FT 'their 63' provided M1 previously awarded |
| Depends on M1, B1 previously awarded |
| Alternative: |
| By 1 minute, 65 passengers left B1 |
| (100×) 65/70 |
| $0.92(8 \ldots)$ or 0.93 or $92(8 \%)$ or $93(\%)$ |
| Conclusion that target met |
| ${ }_{\text {A1 }}$ |
| (Depends on M1, B1) |
| Alternative: |
| For candidates clearly considering the number of passengers left on the plane, must be evidence of this before awarding marks ( $0.1 \times 70=$ ) |
| 7 (passengers left on the plane) B1 |
| (After 1 minute) 70-65 M1 |
| 5 (passengers) A1 |
| Conclusion that target met |
| (Depends on M1, B1) | <br>

\hline 6(a) April \& B1 \& <br>
\hline 6(b) January \& B1 \& <br>
\hline 6(c)(i) January and February \& B1 \& In either order <br>
\hline 6 (c)(ii) 43 \& B1 \& <br>

\hline $$
\begin{array}{lr}
\text { 6(d) } & \text { FALSE } \\
& \text { TRUE } \\
& \text { FALSE } \\
& \text { FALSE }
\end{array}
$$ \& B2 \& B1 for any 3 correct responses <br>

\hline
\end{tabular}

$7(\mathrm{a}) 8 \times 10^{-5}$	B1	
7 (b)(i) $\quad 30$ (pieces of card)	B2	If working is shown, it needs to be correct for   the award of B2   Do not accept final answer of 30 mm for B2

\begin{tabular}{|c|c|c|}
\hline  \& M1
M1

A1

A1 \& | May be implied. |
| :--- |
| This M1 implies the previous M1 |
| CAO. May not be seen. |
| FT provided at least M1 awarded and rounding required |
| A correct answer of 8 (with no errors) from M1 awarded gains all 4 marks |
| Alternative methods: |
| M1 for n painters take 1 hour to paint $10 \mathrm{n}\left(\mathrm{m}^{2}\right)$ |
| M1 for 600/8 |
| A1 for 75 ( $\mathrm{m}^{2}$ / hour) |
| A1 for 8 (painters) |
| A correct answer of 8 (with no errors) from M1 awarded gains all 4 marks |
| OR |
| M2 for $5 \times \frac{10}{8} \times \frac{600}{500}$ |
| This is for the correct use of the 5 with all 4 numbers, 10, 8, 600 and 500 |
| M1 for correct use of the 5 with any 2 of the numbers |
| A1 for 7.5 or equivalent. CAO. May not be seen A1 for 8 (painters) |
| FT provided at least M1 awarded and rounding required |
| A correct answer of 8 (with no errors) from M1 awarded gains all 4 marks | <br>

\hline | 8(b) Valid assumption e.g. |
| :--- |
| 'All painters work at the same rate (or speed)', |
| 'They all paint $10\left(\mathrm{~m}^{2}\right)$ in an hour' |
| 'Each painter is equally efficient' | \& B1 \& | Do not accept e.g. |
| :--- |
| 'The rooms (or walls) are the same shape', |
| 'They had the same breaks' |
| 'They don't have breaks' |
| 'Each painter works at a constant speed' | <br>

\hline
\end{tabular}

9(a)(i) $4 \times 1+4 \times 4+4 \times 3+8 \times 0 \cdot 5$   $=36$	M1   A1	Allow M1 for any 3 correct products   CAO
9(a)(ii)		FT for all marks from their answer to (a)(i)   provided their work in (a)(ii) is of equivalent   difficulty.   If FT results in the median being at one the   group boundaries, then award a possible S1   only if correctly found


10(a)(i) Tangent drawn at $\mathrm{t}=50$ Idea of increase in speed $\div$ increase in time   Reasonable approximation for the gradient	$\begin{aligned} & \text { S1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Ignore signs for M1 only   Allow 1 slip in reading the scale for M1 only   Only award if S1 awarded   Accept a fraction not in its lowest terms   Mark final answer
$\begin{aligned} & \text { 10(a)(ii) } \\ & \text { e.g. } 10 x=2 \cdot 444 \ldots \text { and } 100 x=24 \cdot 444 \ldots \\ & \text { and attempt to subtract } \\ & 22 / 90 \text { (ISW) } \end{aligned}$	M1 A1	$O R x=0 \cdot 2444 \ldots$ and $10 x=2 \cdot 444 \ldots$   M1A0 for 2-2/9   $100 x$ - x leads to 242/990 (which simplifies to 22/90). ISW
10(b)(i) Sight of speeds of $10,15,25,30$   Split into at least 4 areas and attempt to sum (Area $=)^{1 / 2 \times 20 \times(10+30+2(15+25+30)) ~}$ $\text { = } 1800(\mathrm{~m})$	B1   M1   M1   A1	Or equivalent. (Areas of $250,400,550,600$ )   (If 8 areas used, areas of $110,135, \approx 160, \approx 210$,   270, 295, 300, 300)   Allow 1 slip in reading the scale   CAO.   A1 for an answer of $\approx 1780(\mathrm{~m})$ if 8 areas used. CAO.
$\begin{aligned} &\text { 10(b)(ii) (Total distance }=) \\ & 1800+30 \times(38 \text { to } 40 \text { inclusive) } \\ &=2940 \text { to } 3000(\mathrm{~m}) \\ &\text { (Average speed }=) \text { total distance } \div 120 \\ &=24.5 \text { to } 25(\mathrm{~m} / \mathrm{s}) \end{aligned}$	M1 A1 M1 A1	FT 'their 1800'   FT 'their total distance'
$\begin{aligned} & 11(\mathrm{a}) \\ & \begin{array}{r} 1 / 3 \times \pi \times 5^{2} \times 12 \text { and } \pi \times 3^{2} \times 4 \\ \text { (Vol remaining }=)^{1 / 3} \times \pi \times 5^{2} \times 12-\pi \times 3^{2} \times 4 \\ \\ =100 \pi-36 \pi \quad\left(=64 \pi \mathrm{~cm}^{3}\right) \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow the use of numerical values of pi for the B2 and M1 marks   B1 for either of these expressions   FT use of $1 / 3 \times \pi \times 10^{2} \times 12$   Convincing. Must be in terms of $\pi$.
$\begin{aligned} & 11(\mathrm{~b})\left(\text { Slant length }{ }^{2}=\right) 12^{2}+5^{2} \\ & \text { Slant length }=169 \text { OR }(\text { Slant length }=) \sqrt{ } 169 \\ & \text { (Slant length }=) 13(\mathrm{~cm}) \\ & \text { (Surface area }=) \pi \times 5^{2}-\pi \times 3^{2}+\pi \times 5 \times 13 \\ & =81 \pi\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1   A1   A1   M2   A1	May be unsupported   Allow the use of numerical values of pi FT 'their 13' provided Pythagoras attempted M1 for the appropriate addition/subtraction of 2 correct terms   CAO. Must be in terms of $\pi$.

шјес
cbac

## GCSE MARKING SCHEME

## SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 2 (HIGHER) 3310U60-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE Mathematics - Numeracy Unit 2: Higher Tier Summer 2017	Mark	Comment
1. $850 \times 0.76(=£ 646) \quad$ or equivalent   (£)280(.1225...)	M1 M1   A1	M1 marks can be awarded in either order (Note: If calculated first $850 \times 0.87^{6}=$ £368.58(22...)   Accept answers in the inclusive range (£)280 to (£)281   Award M1, SC1 for an answer ( $850 \times 0.76 \times 0.87^{7}=£$ ) in the inclusive range (£)243 to (£)244
2. Sight of any 2 of: $25.5,36.5,47.5$ OR sight of $25+36+47+1.5$ or equivalent   Greatest 109.5 (cm) or 109.499999... (cm)	B1   B1	Do not accept '. 49 ' instead of '.5’, but allow '. 49 recurring'   CAO, must be from correct working, or unsupported   Allow an answer of $110(\mathrm{~cm})$ from sight of 109.5(cm)   Do not accept 109.49 (cm)
3. Perpendicular bisector drawn:   Wrexham and Aberporth   Caernarfon and Swansea   Circle with radius $2 \mathrm{~cm} \pm 2 \mathrm{~mm}$ ( 20 miles) centred at the intersection of the perpendicular bisectors   Correct region in Wales identified, from arc radius equivalent to $2 \mathrm{~cm} \pm 2 \mathrm{~mm}$ (20 miles)	B1   B1   B1   B1	Tolerance $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$   Tolerance $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$   Independent mark   FT from the intersection of 'their 2 straight lines', i.e. following previous B0 B0   Independent mark   FT provided 'their region' (arc of a circle) spans Wales and England to give a similar region which excludes England   The region should not include England, shading or indicating the full circle is B0   (Common incorrect response: A circle of the correct radius drawn with the centre at the intersection of straight lines joining Wrexham with Aberporth and Caernarfon with Swansea is awarded B 0 B 0 B 1 B 0 )


```4. tan}=0.81(1\ldots) or tan -1 146/180 Angle of elevation is 39.(04... ) Statement e.g. '(not safe as) too far (from the foot of the cliff)', 'too far out at sea'```	$\begin{gathered} \mathrm{M} 2 \\ \mathrm{~A} 1 \\ \mathrm{E} 1 \end{gathered}$	$\text { M1 for tan (angle of elevation) }=146 / 180$   FT 'their acute angle' provided at least M1 previously awarded, with   - $<42^{\circ}$ being too far out, or   - $\quad>45^{\circ}$ too near the cliff, or   - between these angles it is safe   Alternative for $M$ marks, e.g.:   $\sin$ (elevation $)=\frac{146}{2} \quad(=146$ $\sqrt{ }\left(180^{2}+146^{2}\right)(231.767 .$.   OR   $\cos ($ elevation $)=\frac{180}{\sqrt{ }\left(180^{2}+146^{2}\right)} \quad M 1$   $\sin ^{-1} 0.62994 \ldots$ OR $\cos ^{-1} 0.7766 \ldots \quad M 1$   If no marks:   Award SC1 for an answer of $50.95 \ldots{ }^{\circ}$ or $51^{\circ}$ AND 'too near'
$\begin{aligned} & \text { 5.(a) }\left(\text { Length }^{2}=\right) 44^{2}-16^{2} \text { or } \\ & 44^{2}=\text { Length }^{2}+16^{2} \\ & \text { (Length }=) \sqrt{ } 1680 \text { or } \text { Length }^{2}=1680 \\ & 41 \text { (inches) } \end{aligned}$	M1 A1 A2	2 sig.fig. is required A1 for 41.0, 41.00 or $40.9878 \ldots$ rounded or truncated FT from M1 for the correctly evaluated square root of 'their 1680' provided 'their answer' < 44 (inches) for possible A2 or A1
5.(b) $(100 \times) 710.40 \div 74$ (£)960	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	
5.(c)(i) 23.52 p	B1	
5.(c)(ii) 27.44 p	B1	

6. (Old fish tank contains) $60 \times 40 \times 45$	B1	$\left(108000 \mathrm{~cm}^{3}\right)$
(New fish tank maximum volume is) $\begin{aligned} & \pi \times 25^{2} \times 70 \\ & \text { Answer in range } 137375 \text { to } 137500\left(\mathrm{~cm}^{3}\right) \end{aligned}$	M1	
Conclusion, e.g. $\text { '137 } 375 \text { > } 108000 \text { ', }$ 'Elin can be certain as the volume of the new tank is greater' 'it fits'	B1	FT 'their new fish tank calculation' conclusion provided $108000\left(\mathrm{~cm}^{3}\right)$ seen and at least M1 previously awarded Alternative: (To find new fish tank water level) (Old fish tank contains) $60 \times 40 \times 45$ (New tank) $\pi \times 25^{2} \times$ 'water level' $60 \times 40 \times 45=\pi \times 25^{2} \times{ }^{\prime}$ water level' (Water level) 55 (cm) with contents will be certain to fit (55 cm must be correct) Depends on all previous marks awarded
Organisation and communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
7.(a) Method of systematic sampling, e.g. '(select one person from the first 12 people at random then) ask every ($240 \div 20=$) 12th person'	E1	Note to markers: There should really be mention of the first person being selected at random, however in this first assessment, with only 1 mark available, not doing so will be condoned in this mark scheme

7. (b) Mid points 20.4, 21.3, 22.2, 23.1	B1	
$\begin{aligned} & 20.4 \times 2+21.3 \times 3+22.2 \times 10+23.1 \times 5 \\ & (=40.8+63.9+222+115.5=) \end{aligned}$	M1	FT 'their mid points' provided they are all within or at the bounds of the appropriate groups
(Sum of 20 hand spans is) $442(.2 \mathrm{~cm}$)	A1	OR estimate of the mean $(442.2 \div 20=) 22(.11 \mathrm{~cm})$ May be implied in further working
(Sum of all 30 hand spans is) $10 \times 22.8+442(.2)(=670(.2) \mathrm{cm})$	M1	OR $10 \times 22.8+20 \times 22(.11)$ FT 'their derived 442.2' provided the correct method seen, including where one of 'their mid points' was outside the group
$\div 30$	m1	Intention to divide the sum of 30 measurements by 30
$22(.34 \mathrm{~cm})$	A1	Depends on M1, M1 and m1 previously awarded
		(Watch for an answer 22(.. cm) from $\frac{22.1(1)+22.8}{2}$, award B1M1A1M0m0A0)
7. (c) Improvement suggestion, e.g. 'ask more people', 'take a bigger sample', 'ask every $5^{\text {th }}$ person instead', 'collect more data (from different regions in Wales)', 'use all the raw data', 'do both hands', 'stratified sample on age', 'stratified sample on gender', 'by narrowing the groups in the table'	E1	Allow, e.g. 'ask people of different ages', Do not accept, e.g. 'measure more accurately'
$\begin{aligned} & \text { 8. } A B \text { or } A C=2.5 \div \cos 52^{\circ} \\ & O R \quad A B \text { or } A C=2.5 \div \sin 38^{\circ} \\ & O R \quad A B \text { or } A C=4(.06067 \ldots \mathrm{~m}) \end{aligned}$	M2	M1 for any of the following - $\cos 52^{\circ}=2.5 / \mathrm{AB}$ - $\cos 52^{\circ}=2.5 / \mathrm{AC}$ - $\sin 38^{\circ}=2.5 / \mathrm{AB}$ - $\sin 38^{\circ}=2.5 / \mathrm{AC}$ - equivalent full method without $A B$ or $A C$ as the subject
Total length $2 \times 4(.06067 \ldots) \quad(+6)$	m1	FT 'their derived AB or AC ' provided M1 awarded
14(.12... metres)	A1	FT from M1, m1 previously awarded
Cost per metre is $410 \div 14(.12 \ldots)$	m1	FT from 'their total length' for m1 only Depends on previous M1
(£)29(.03...)	A1	CAO, i.e. (£)29.(....) (Note: $410 \div 14=£ 29(.285 \ldots$) Accept an answer that would round to (£)29 from correct working

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
9. \(80 \times(\) Number of pupils in Year 11) \(\div 690\) \\
(List of unrounded answers =)
\[
35 \cdot 5(942 \ldots), 27 \cdot 7(101 \ldots), 16 \cdot 6(956 \ldots)
\] \\
(Numbers invited \(=\)) 35, 28, 17
\end{tabular} \& M1
A1

A1 \& | Sight of this calculation for any one school Accept 'their $307+239+144$ ' for 690 for M1 only |
| :--- |
| Allow A1 for any 2 correct unrounded answers, OR for final answers of $36,28,17$ |
| OR 36,27,17 OR 36,28,16 if unrounded answers not seen CAO |

\hline | 10. Appropriate use of 12 and 2 in the AER formula |
| :--- |
| Sight of 0.0385 and 0.0386 |
| $($ AER Bannau $=)(1+0 \cdot 0385 / 12)^{12}-1$ |
| OR $($ AER Eryri $=)(1+0 \cdot 0386 / 2)^{2}-1$ |
| (AER Bannau =) $0.0391(866 \ldots)$ or 0.0392 OR 3.91(866...) \% or 3.92% |
| AND |
| (AER Eryri =) 0.0389(724...) or 0.0390 |
| OR 3.89(724...) \% or 3.9(0) \% |
| AND |
| Correct statement e.g. 'Bannau offers better annual rate of interest' | \& B1

B1
M1

A2 \& | Denominators AND powers |
| :--- |
| Or 3•85/100 and 3•86/100 |
| Do not accept 0.0391(866...)\% or 0.0392\% |
| Do not accept 0.0389(724...)\% or 0.0390\% |
| A1 for either correct AER |
| If no marks awarded, SC2 for comparing correct end of year amounts (amount $\times 1.0392$, amount $\times 1.0390$) with a correct conclusion SC1 for calculating the correct end of year amount for one account |

\hline $$
\begin{aligned}
& \text { 11.(a) (Length of arc) } \quad \frac{50}{360} \times 2 \times \pi \times 5 \\
& =4 \cdot 3(611 \ldots) \text { to } 4 \cdot 4(\mathrm{~cm}) \text { OR } 500 \pi / 360(\mathrm{~cm}) \\
& \text { Perimeter }=14 \cdot 3(611 \ldots) \text { to } 14 \cdot 4(\mathrm{~cm})
\end{aligned}
$$ \& M1

A1
B1 \& Or $25 \pi / 18$. May be implied by B1 FT for adding 10 providing M1 awarded

\hline $$
\begin{aligned}
& \text { 11.(b) } \\
& \text { (Area } 1 / 4 \text { circle }=\text {) } 7.065 \text { to } 7 \cdot 1\left(\mathrm{~cm}^{2}\right) \text { OR } 9 \pi / 4 \\
& \text { (Area sector }=\text {) } \frac{50}{360} \times \pi \times 5^{2} \\
& =10 \cdot 9\left(027 \ldots \text { to } 10.91 \text { OR } 125 \pi / 36\left(\mathrm{~cm}^{2}\right)\right. \\
& \begin{array}{r}
\text { (Surface area of badge }=\text {) } \\
7 \cdot 06 \ldots+10 \cdot 91 \ldots-\frac{50}{360} \times \pi \times 3^{2} \\
(3.925 \text { to } 3.9275)
\end{array} \\
& =14.0(427 \ldots) \text { to } 14.1 \text { OR } 161 \pi / 36\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$ \& B1

M1
A1
M1

A1 \& | May be implied in further working |
| :--- |
| May be implied in further working |
| FT 'their 7-06...' and 'their 10.91...' provided previous M1 awarded |
| Needs to come from values that are correct to at least 1 decimal place |
| Alternative method: |
| B1 for $\left(\frac{20}{360} \times \pi \times 3^{2}\right) 1.57$ to 1.571 or $\pi / 2$ (cm^{2}) |
| (may be implied in further working) |
| M1 for $\frac{50}{360} \times \pi \times 5^{2}$ |
| A1 for $10 \cdot 9(027 \ldots)$ to 10.91 OR $125 \pi / 36\left(\mathrm{~cm}^{2}\right)$ |
| M1 for $10 \cdot 9 \ldots+\left(2 \times \frac{20}{360} \times \pi \times 3^{2}\right)$ |
| FT 'their 10.9' and 'their 1.57 ' provided previous M1 awarded |
| A1 for $14 \cdot 0(427 \ldots)$ to $14 \cdot 1$ OR $161 \pi / 36\left(\mathrm{~cm}^{2}\right)$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
12.(a) Sight of 805 (cm) or 405 (cm)
\[
(805 \times 405)+(405 \times 400)
\] \\
OR a consistent attempt at converting these into metres
\[
=488025\left(\mathrm{~cm}^{2}\right)
\]
\end{tabular} \& B1
M2

A1 \& | Do not accept $804 \cdot 9$ or $404 \cdot 9$, but allow $804 \cdot 9$ recurring or $404 \cdot 9$ recurring |
| :--- |
| FT their upper bounds |
| M1 for $805 \times 405+(400<n \leq 405 \times 405)$ |
| (Note: use of $805 \times 405+405 \times 405$ leads to 490050) |
| OR 48•8(025) m^{2}. Allow $488000\left(\mathrm{~cm}^{2}\right)$ |
| CAO. Ignore attempts to convert into m^{2}. |
| Alternative method: |
| M2 for $805^{2}-400^{2}$ |
| Allow M1 for $805^{2}-(395 \leq n<400)^{2}$ |
| A1 for 488025 (cm^{2}) |
| CAO. Ignore attempts to convert into m^{2}. |

\hline $$
\begin{aligned}
& \text { 12.(b) Conversion } 48.8(025)\left(\mathrm{m}^{2}\right) \text { OR } \begin{array}{r}
0.00325 \\
\left(\mathrm{~g} / \mathrm{cm}^{2}\right)
\end{array} \\
& 32.5 \times 48.8(025) \quad \text { OR } 0.00325 \times 488025 \\
& \quad=1586(.08125)(\mathrm{g}) \quad \text { AND } \\
& \text { Statement e.g. } \\
& \text { 'No, more than } 1.5 \mathrm{~kg} \text { (could be) needed' }
\end{aligned}
$$ \& B1

M1

A1 \& | FT 'their 488025' OR 'their 32.5' |
| :--- |
| $\left(805 \times 405+405 \times 405=490050\left(\mathrm{~cm}^{2}\right)\right.$ or 49(•0050) m^{2}) |
| FT 'their $32 \cdot 5$ ' provided it is greater than 30 and ≤ 35, and FT their area provided an attempt made at converting into $\mathrm{g} / \mathrm{cm}^{2}$ or m^{2} Accept 1.6 kg from correct working FT $32.5 \times$ 'their area' correctly converted into m^{2} |
| Alternative method: |
| M1 for |
| $0.0325 \times 48.8(025)$ OR $3.25 \times 10^{-6} \times 488025$ |
| $\left(\mathrm{kg} / \mathrm{m}^{2} \times \mathrm{m}^{2}\right)$ |
| $\left(\mathrm{kg} / \mathrm{cm}^{2} \times \mathrm{cm}^{2}\right)$ |
| FT 'their $32 \cdot 5$ ' provided it is greater than 30 and ≤ 35, and FT their area |
| A1 for $1 \cdot 58(60 \ldots$) or $1 \cdot 6(\mathrm{~kg})$ AND |
| Statement e.g. |
| 'No, more than 1.5 kg (could be) needed' |
| FT $32.5 \times$ 'their area' correctly converted into m^{2} |
| $O R$ |
| For candidates clearly considering the smallest area that could be seeded |
| B1 for 1500 (g) OR $0.0325(\mathrm{~kg})$ |
| FT 'their 32.5' |
| M1 for $1500 \div 32.5$ OR $1.5 \div 0.0325$ |
| FT 'their 32.5 ' provided it is greater than 30 |
| and ≤ 35 for M1 only |
| A1 for 46(•15...) (m^{2}) AND |
| Statement e.g. |
| 'No, more than 1.5 kg (could be) needed' |
| FT their area, |
| Only award A1 if their area has been correctly |
| converted into m^{2} for comparison |

\hline
\end{tabular}

13.(a) True False	B1	
13.(b) (lengths in ratio) $24: 30 \quad(=4: 5)$ (volumes in ratio) $13824: 27000 \quad\left(=4^{3}: 5^{3}\right)$	B1 B1	Ratio can be reversed Or equivalent (e.g. scale factor $=1.25$ or $30 / 24$ OR 0.8 or $24 / 30$) Ratio can be reversed Or equivalent (e.g. 'Volume scale factor' = $1 \cdot 9(53125)$ or $1 \cdot 25^{3}$ or (30/24) ${ }^{3}$ OR 0.512 or 0.8^{3} or $(24 / 30)^{3}$
Statement e.g. ' 125 is not double 64 (so the increase is not double)', or ' 64 is not half of 125 ', or 'Increase is $95(\cdot 3125) \%$ '	E1	Depends on B2 provided 4^{3} and 5^{3} have been evaluated correctly or $1 \cdot 25^{3},(30 / 24)^{3}, 0 \cdot 8^{3}$ or (24/30) ${ }^{3}$ evaluated correctly
$\begin{aligned} & \text { 13.(c) (Scale factor of heights }=\text {) } \sqrt{4} \text { or } 2 \\ & \text { OR } \sqrt{\frac{1}{4}} \text { or } 0.5 \\ & 24 \div \sqrt{4} \quad \text { OR } \quad 24 \times \sqrt{\frac{1}{4}} \\ & =12(\mathrm{~cm}) \end{aligned}$	B1 M1 A1	Alternative method: M1 for $24^{2} \div 4$ A1 for height $^{2}=144$ or (height $=$) $\sqrt{ } 144$ A1 for 12 (cm)

\begin{tabular}{|c|c|c|}
\hline $$
\begin{gathered}
\text { 14.(a) (Hyp of triangle }=) 1 \div\left(\sin 7 \cdot 1\left(^{\circ}\right)\right) \\
=8 \cdot 0(9051 \ldots) \text { or } 8 \cdot 1(\mathrm{~m}) \\
\left(A B^{2}=\right) 5^{2}+8 \cdot 0(9051 \ldots)^{2} \\
A B^{2}=90 \cdot 4(564 \ldots) \text { or }(A B=) \sqrt{ } 90 \cdot 4(564 \ldots) \\
(A B=) 9 \cdot 5(108 \ldots)(\mathrm{m})
\end{gathered}
$$ \& M2
A1
M1

A1

A1 \& | Or equivalent |
| :--- |
| M1 for $\sin 7 \cdot 1\left(^{\circ}\right)=1 \div($ Hyp of triangle $)$ |
| Accept 8 (m) from correct working |
| FT their 8•0(9051...) provided trigonometry attempted |
| FT their rounded 8•0(9051...) |
| Do not accept $9.4(\mathrm{~m})$ from use of $8(\mathrm{~m})$ |
| Needs to be correct to 1 d.p. |
| FT from previous M1 for the correctly |
| evaluated square root of 'their $90 \cdot 4(564 \ldots)$ ' |
| provided 'their answer' > 'their 8.09(051...)' |
| Alternative method: |
| Base of triangle $=1 / \tan 7 \cdot 1$ ($=8 \cdot 0284 \ldots$) M1 |
| $5^{2}+8 \cdot 0(284 \ldots)^{2} \quad(=89 \cdot 456 \ldots) \quad$ M1 |
| Base diagonal $=9 \cdot 4(581 \ldots)$ or $9 \cdot 5(\mathrm{~m}) \quad$ A1 |
| $1^{2}+9 \cdot 4(581 \ldots)^{2}$ |
| FT 'their rounded 9•4(581...)' |
| $A B^{2}=90 \cdot 4(564 \ldots)$ or $(A B=) \sqrt{ } 90 \cdot 4(564 \ldots) A 1$ |
| $(A B=) 9 \cdot 5(108 \ldots)(m)$ |
| A1 |
| Needs to be correct to 1 d.p. |
| FT from previous M1 for the correctly |
| evaluated square root of 'their $90 \cdot 4(564 \ldots)$ ' |
| provided 'their answer' > 'their 8.09(051...)' |

\hline $$
\begin{aligned}
& \text { 14.(b) } \sin ^{-1}(1 / 9 \cdot 5(108 \ldots)) \\
& =6(\cdot 0354 \ldots)\left({ }^{\circ}\right)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{M} 2 \\
& \mathrm{~A} 1
\end{aligned}
$$

\] \& | FT 'their 9•5(108...)' |
| :--- |
| M1 for $\sin ($ angle $)=1 / 9 \cdot 5(108 \ldots)$ |
| Needs to be an answer that is < $7 \cdot 1$ |
| Needs to be correct to 1 d.p. |
| Do not penalise premature rounding on FT if already penalised in (a) |
| Alternative method: |
| Alternative method: |
| B1 for 'Delyth's route is going up 1(m) in (travelling) 8.0(9051... m).' OR ‘The gradient of Delyth's route is (1/8.0(284...)) $0 \cdot 12(455 .$.$) '$ B1 for 'loan's route is going up $1(\mathrm{~m})$ in (travelling) 9•5(108...m)' OR 'The gradient of loan's route is (1/9•4(581 ...)) 0•10(572...)' |
| B1 for 'So loan's route is less steep.' |
| This B1 is dependent on previous B1B1 being awarded and provided loan's gradient is less steep than Delyth's |
| FT their values from (a) |

\hline
\end{tabular}

