GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 1 (FOUNDATION TIER) 3300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

GCSE Mathematics Unit 1: Foundation Tier	Mark	Comments
1. (a) Angle of 35° drawn at A	B1	Accept 33° to 37° Point alone is not sufficient.
1.(b) Circle radius 7 cm (diameter 14 cm)	B1	Accept radius 6.8 (cm) to 7.2 (cm)
2.(a) 5433	B1	
2.(b) 174	B1	
2.(c) 75	B1	
$\text { 2.(d) } 6 \times 7 \div 2=21$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	If no marks, award SC1 for sight of 42.
3.(a) 600	B1	
3.(b) 4000	B1	
4.(a) D	B1	
4.(b)	B1	
5.(a) 9	B1	
5.(b) \div	B1	
6.(a) 53	B1	
6.(b) 125	B1	
7.(a) 70 (\%)	B1	
7.(b) 6 sectors shaded	B1	
$\begin{aligned} & \text { 8. } 1 / 3 \times 180\left({ }^{\circ}\right) \text { OR } 2 / 3 \times 180\left({ }^{\circ}\right) \quad \text { or equivalent } \\ & 60\left({ }^{\circ}\right) \text { OR } 120\left({ }^{\circ}\right) \\ & (180-60=) 120\left({ }^{\circ}\right) \text { OR }(180-120=) 60\left({ }^{\circ}\right) \end{aligned}$	M1 A1 B1	A1 for either 60(${ }^{\circ}$) OR $120\left({ }^{\circ}\right)$ FT 'their 60' or 'their 120'. Two angles which add to $180\left({ }^{\circ}\right)$ will get this B1. If no marks award SC1 for one angle twice the size of the other.
$\begin{aligned} & \begin{array}{l} \text { Alternative Method } \\ 2 x+x=180\left({ }^{\circ}\right) \\ x=60\left({ }^{\circ}\right) \\ 2 x=120\left({ }^{\circ}\right) \end{array} \\ & \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	FT $2 \times$ 'their x ' or 180-'their x '
9.(a) 16 g	B1	
9.(b) ($\mathrm{y}=) 9$	B1	Accept embedded answers. Mark final answer.
9.(c) (w =) 30	B1	Accept embedded answers. Mark final answer.

$\text { 9.(d) } \quad \begin{aligned} 4 \mathrm{x} & =10-7(=3) \\ \mathrm{x} & =\frac{3}{4} \text { or equivalent. } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT from $4 \mathrm{x}=\mathrm{b}$. Integer answer required if b is a multiple of 4 Mark final answer. Allow an embedded answer eg $4 \times 0.75+7=10$ for B2, but penalise -1 if contradicted by $x \neq 0.75$
10. (Factors of) 16, OR 32, OR 64, \ldots (Multiples of) 4	B1 B1	Accept any multiple of 16 which does not have a factor of 3 .
11. 9,13 and 14 OR 10,13 and 15 OR 11,13 and 16 OR 12,13 and 17	B2	Allow in any order. B1 for 3 whole numbers with a median of 13 OR B1 for 3 whole numbers with a range of 5 Penalise -1 for any repeated numbers. e.g. 8, 13, 13 gains B2-1 = B1 $13,13,13$ gains B1-1 $=B 0$.
12. $\begin{aligned} & (\text { Perimeter }=) 8 \times 7+2 \times 3(\mathrm{~cm}) \quad \text { or equivalent } \\ & (\text { Perimeter }=) 62(\mathrm{~cm}) \end{aligned}$	B1 M1 A1	May be implied by correct method which would lead to an answer of 62 (cm). (This is the only diagram which can gain B1.) If no diagram, then B1 M1 A1 for correct calculation which leads to answer of 62 (cm). FT these large rectangles only:
Organisation and Communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means.
Accuracy of writing	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
13.(a) 20(:)18 OR 8(:)18 p.m..	B1	B0 for (0)8:18 or 8:18 a.m. or 20:18 a.m. Allow $20(:) 18$ p.m. and 08:18 p.m.

13.(b) 6 (hours) 40 (minutes)				B1	
13.(c) 265 (seconds)				B2	B1 for sight of 435 AND 170 OR B1 for sight of 300 AND 35 OR B1 for 4 minutes 25 seconds.
14.(a) Line $\mathrm{x}=-4$ drawn				B1	Line must be at least 2 units long. B0 if 'extra' lines drawn unless correct line unambiguously identified.
14.(b)(i) Point C shown at ($-2,-4$)				B2	Allow B2 if point C not labelled but is unambiguously at the correct position (eg 'end of line'). Otherwise, B1 if Point C at $(-2, y) \mathrm{y} \neq 3$. ($\mathrm{BA} \mathrm{C}=90^{\circ}$) SC1 for point C at $(5,-4)$.
14.(b)(ii) (-2,-4)				B1	FT 'their unambiguously identified position of point C '. Allow missing brackets.
15.(a) 2700				B2	B1 for sight of 27 OR sight of 100 . Mark final answer.
15.(b)	15.(b) 0.08			B1	Mark final answer
15.(c) Correctly using a common denominator.				$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Mark final answer.
16.	$\begin{aligned} & \hline \text { Yes } \\ & \hline 150 \end{aligned}$	$\begin{gathered} \mathrm{No} \\ \hline 50 \end{gathered}$	Not sure 100	B3	B1 for (Yes =) 150 C.A.O. B2 for $(\mathrm{No}=) 50$ AND (Not sure $=$) 100. or FT 'their Yes' for ($\mathrm{No}=)^{1 / 3}(300-$ 'Yes') AND If B2 not gained, then (Not sure $=)^{2 / 3}(300-' Y e s ')$ B1 for $(\mathrm{No}=) 50$ OR (Not sure $=100$ or FT 'their Yes' for ($\mathrm{No}=)^{1 / 3}(300-' \mathrm{Yes}$ ') OR (Not sure $=)^{2 / 3}(300-' Y e s ')$ B1 for 'No' + 'Not sure' $=150$ B1 if 'Not sure' $=2 \times$ 'No'. B1 for Yes $+\mathrm{No}+$ Not sure $=300$.
17.$\begin{aligned} & \mathrm{a}=113 \\ & \mathrm{~b}=67 \\ & \mathrm{c}=113 \end{aligned}$				$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	C.A.O. OR FT 180 - 'their a'. OR FT = 'their a' OR FT 180 - 'their b'.
$\text { 18.(Probability of Puffin Island=) } \begin{aligned} & 1-0.4-0.15-0.25 \\ &=0.2 \end{aligned}$ (Number of cards showing Puffin Island $=$) 0.2×80				M1 A1 M1 A1	An unsupported answer of 0.56 implies M1 FT 'their stated $P(P u f f i n$ Island)' $\times 80$, only if 'their stated $\mathrm{P}($ Puffin Island)' <1. $16 / 80$ is M1A0 unless 16 has been seen.
Alternative method (Number of cards showing other 3 islands $=$) $\begin{aligned} 0.4 \times 80+0.15 \times 80 & +0.25 \times 80 \text { or equivalent } \\ & =64\end{aligned}$ $=64$ (Number of cards showing Puffin Island =) $80-64$ $=16$				$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ M1 A1	Allow M1 for sight of 32 AND 12 AND 20. FT 80 - 'their derived 64 ', only if 'their derived 64 ' <80. $16 / 80$ is M1AO unless 16 has been seen.

19.(a) Correct construction method. e.g. (i) intersecting arcs of radii 6 cm and 9 cm with centres A and C respectively. OR (ii) copying the angle at B at the point A (will require $A B$ or $B A$ to be extended). Completed parallelogram.	M1 A1	Relevant construction arcs must be seen.
$\text { 19.(b) } \quad \begin{aligned} \text { 'measured length' } & \times 200 \\ = & 1520(\mathrm{~cm}) \\ = & 15 \cdot 2 \text { metres } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Allow for error in measuring line XY. Accept only in range 1480 to 1560 inclusive. FT 'their 1520 ' $\div 100$. Unsupported 14.8 to $15 \cdot 6$ inclusive gains all 3 marks.
$\begin{aligned} & \begin{array}{l} \text { Sight of scale is } 1 \mathrm{~cm} \text { represents } 2 \mathrm{~m} \\ \text { 'measured length' } \times 2 \end{array} \\ & \quad=15.2 \text { metres } \end{aligned}$	$\begin{aligned} & B 1 \\ & M 1 \\ & \text { A1 } \end{aligned}$	Allow for error in measuring line $X Y$. Accept only in range 14.8 to 15.6 inclusive.
20.(a) $\quad 9.231$	B1	
20.(b) 170	B1	
20.(c) 10	B1	

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 2 (FOUNDATION TIER) 3300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

	GCSE MATHEMATICS Unit 2: Foundation Tier	Mark	Comments
1.	1.98 53 5.88 0.41	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Ignore spurious units
2.(a)	3700000	B1	
2.(b)	9998	B1	
2.(c)	1, 3, 5 and 15	B2	Ignore repeats. Allow 1×15 and 3×5. B1 for 2 correct factors with none incorrect, OR for 3 or 4 correct with no more than one incorrect.
3.(a)	unlikely	B1	
3.(b)	20	B1	
3.(c)	Rolling a 1 on the dice	B1	
4.(a)	\square	B2	B1 for two correct lines with one incorrect line OR for one correct line with no incorrect lines.
4.(b)	(an) equilateral (triangle)	B1	
5.(a)	102 OR 120	B1	
5.(b)	201 OR 210	B1	
	Three different even numbers with a sum of 24, not including 8 . Possible solutions are 2, 4 (and) 18 2, 6 (and) 16 2, 10 (and) 12 4, 6 (and) 14	B3	In any order. Allow inclusion of negative numbers. If B3 not awarded, award B2 for three numbers which sum to 24 which satisfy two of the three conditions: - The numbers are different - The numbers are even - None of the numbers is 8 If B2 not awarded, award B1 for three numbers which sum to 24 .
7.(a)	0.12 or $\frac{3}{25}$. or equivalent	B1	
7.(b)	$\begin{aligned} & \frac{3}{5} \times 632 \text { or equivalent } \\ & =379.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Award M1 A0 for 1896/5 or $379 \frac{1}{5}$.
7.(c)	2.5	B1	
	$\begin{array}{lll} \frac{3}{10} & & 30 \\ \frac{9}{(20)} & 0.45 & \\ \hline \end{array}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	Accept 30/100 for 3/10

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 9. (Length of sides of Ivy's Cuboid B =) } \\
\& 3 \mathrm{~cm}, 12 \mathrm{~cm}, 20 \mathrm{~cm} \\
\& \text { (Volume of Ivy's Cuboid }=\text {) } 3 \times 12 \times 20
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& \mathrm{M} 1
\end{aligned}
\] \& \begin{tabular}{l}
May be implied in further working. \\
F.T. provided two of the dimensions are correct.
\end{tabular} \\
\hline \(=720\left(\mathrm{~cm}^{3}\right)\) \& A1 \& \\
\hline \begin{tabular}{l}
Alternative method \\
(Volume of Gareth's cuboid \(=3 \times 2 \times 4=\)) \(24\left(\mathrm{~cm}^{3}\right)\) \\
(Volume of lvy's cuboid =) \(24 \times 6 \times 5\) \\
\(=720\left(\mathrm{~cm}^{3}\right)\)
\end{tabular} \& \[
\begin{array}{r}
B 1 \\
M 1 \\
\text { A1 }
\end{array}
\] \& F.T. for their stated volume for 'Gareth's cuboid' \\
\hline \begin{tabular}{l}
9. OCW \\
Organisation and Communication \\
Accuracy of writing
\end{tabular} \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means. |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc. |

\hline 10.(a)(i) 16 \& B1 \&

\hline 10.(a)(ii) 2160 \& B2 \& B1 for sight of 2155(•.....) OR 2150 OR 2156. Mark final answer.

\hline 10.(b) \quad| 0.62×7.8 or equivalent. |
| ---: |
| $=4.836$ | ISW \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Unsupported $4 \cdot 8 \ldots$ implies M1. |
| :--- |
| Accept $4^{209} / 250$ (ISW). Allow 1209/250 (ISW) |

\hline 10.(c)(i) 247 \& B1 \&

\hline 10.(c)(ii) 2197 \& B1 \&

\hline 11.(a) 6 \& B2 \& | B1 for 6. |
| :--- |
| B1 FT for correct evaluation of 'their 6' - 11 only if it leads to a negative answer. |

\hline 11.(b) 15 \& B2 \& B1 for sight of 28.8 OR -13.8. Mark final answer.

\hline $$
\begin{gathered}
\text { 12. } \frac{400}{17 \cdot 5} \quad \text { or } \frac{4}{0.175} \\
=22 \cdot 8(\ldots) \text { or } 22 \cdot 9 \\
(\text { Number of rods }=) 22
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { M2 } \\
& \text { A1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | M1 if incorrect place value (in either length). Digits 228..... implies M1. |
| :--- |
| C.A.O. |
| FT if of equivalent difficulty. (i.e. 'their $22 \cdot 8$ ' must be greater than 1 AND their $1^{\text {st }}$ decimal place number greater than or equal to 5 .) Answer of 22 gains all 4 marks. Unsupported answer of 23 gains M2AOBO. |

\hline | 12. Alternative method (trial and improvement) |
| :--- |
| Working with a multiple of 17.5 or 0.175 . $\begin{aligned} & \qquad(n \times 17.5 \text { or } n \times 0.175) \\ & 22 \times 17.5(=385) \text { or } 22 \times 0.175(=3.85) \\ & 23 \times 17.5(=402.5) \text { or } 23 \times 0.175(=4.025) \\ & (\text { Number of rods }=) 22 \end{aligned}$ | \& S1

B1
B1

B1 \& | Award this S1 only if |
| :--- |
| $n>2$ and $n \neq 4$ and $n \neq 400$. |
| This implies previous S1. |
| This implies previous S1 and previous B1 if $402 \cdot 5$ seen. |
| Must be seen in answer space or unambiguously identified (not simply embedded). |
| Answer of 22 gains all 4 marks. |
| Unsupported answer of 23 gains S1B0B1BO. |

\hline
\end{tabular}

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 1 (INTERMEDIATE TIER) 3300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

GCSE Mathematics Unit 1 Intermediate Tier		Mark	Comments

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
8. (Probability of Puffin Island=)
\[
\begin{aligned}
\& 1-0.4-0.15-0.25 \\
\& =0.2
\end{aligned}
\] \\
(Number of cards showing Puffin Island \(=\)) \(0.2 \times 80\)
\[
=16
\]
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
An unsupported answer of 0.56 implies M1 \\
FT 'their stated \(P(P u f f i n\) Island)' \(\times 80\), only if 'their stated \(P(\) Puffin Island)' < 1 . \\
\(16 / 80\) is M1AO unless 16 has been seen.
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method \\
(Number of cards showing other 3 islands \(=\))
\[
\begin{aligned}
0.4 \times 80+0.15 \times 80 \& +0.25 \times 80 \text { or equivalent } \\
\& =64
\end{aligned}
\] \\
(Number of cards showing Puffin Island =) \(80-64\)
\[
=16
\]
\end{tabular} \& M1
A1
M1
A1 \& Allow M1 for sight of 32 AND 12 AND 20.
```
FT 80 - 'their derived 64', only if 'their derived 64' <
80.
16/80 is M1A0 unless 16 has been seen.
``` \\
\hline \begin{tabular}{l}
8. OCW \\
Organisation and Communication. \\
Accuracy of writing.
\end{tabular} \& OC1

w1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline | 9.(a) Correct construction method. |
| :--- |
| e.g. (i) intersecting arcs of radii 6 cm and 9 cm with centres A and C respectively. |
| OR (ii) copying the angle at B at the point A (will require $A B$ or $B A$ to be extended). |
| Completed parallelogram. | \& M1 \& Relevant construction arcs must be seen.

\hline $$
\text { 9.(b) } \quad \begin{aligned}
\text { 'measured length' } & 200 \\
= & 1520(\mathrm{~cm}) \\
= & 15 \cdot 2 \text { metres }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | Allow for error in measuring line XY. |
| :--- |
| Accept only in range 1480 to 1560 inclusive. |
| FT 'their 1520 ' $\div 100$. |
| Unsupported $14 \cdot 8$ to $15 \cdot 6$ inclusive gains all 3 marks. |

\hline | Alternative method |
| :--- |
| Sight of scale is 1 cm represents 2 m 'measured length' $\times 2$ | \& \[

$$
\begin{aligned}
& B 1 \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Allow for error in measuring line $X Y$. |
| :--- |
| Accept only in range 14.8 to 15.6 inclusive. |

\hline 10.(a) $\quad 9.231$ \& B1 \&

\hline 10.(b) 170 \& B1 \&

\hline 10.(c) 10 \& B1 \&

\hline 11(a) $5 \mathrm{n}-3$ \& B2 \& B1 for sight of 5 n . Mark final answer.

\hline 11.(b) 17 \& B1 \&

\hline 11.(c) $2 \mathrm{n}+2$ OR $2(\mathrm{n}+1)$ \& B2 \& | If $2 n+2$ is not their final answer allow B1 for sight of $2 n+2$ in earlier work. |
| :--- |
| B1 for a correct answer not simplified or incorrectly simplified e.g. $\mathrm{n}+\mathrm{n}+2$. |

\hline
\end{tabular}

| 12.(a)(i)
 ε | B1 | |
| :---: | :---: | :---: |
| 12.(a)(ii)
 ε | B1 | |
| 12.(b) A valid statement.
 e.g. 'all multiples of 6 are also multiples of 3 ', 'because 3 goes into 6', ' 6 is a multiple of 3 ', ' 3 is a factor of 6 '. | E1 | Allow e.g. '(set) C is a subset of (set) A', 'it is a multiple of 3 ',
 ' $6,12, \ldots$ are also multiples of 3 '. |
| $\begin{array}{ll} \text { 13. } \begin{aligned} (\text { One part }=) & (£) 210 \div 3 \\ & =(£) 70 \end{aligned} \\ \begin{aligned} &\text { (Total amount }=) \\ & 14 \times(£) 70 \text { OR }(£) 210+4 \times(£) 70 \end{aligned} \\ & \\ & =(£) 9(£) 70 \end{array}$ | M1
 A1
 m1
 A1 | FT 'their ($£$) 70 ' only if M1 gained.
 Allow m1 for sight of 210 AND 280 AND 490 together as the three shares.
 For $210 \div 3 \times 14=980 \begin{gathered}\text { M3 } \\ \text { A1 }\end{gathered}$ |
| 14.(a) 9 - 9 | B2 | B1 for each. |
| 14.(b) At least 6 correct plots and no incorrect plot.
 A smooth curve drawn through their plots. | $\begin{aligned} & \text { P1 } \\ & \text { C1 } \end{aligned}$ | FT 'their $(-2,9)$ ' and 'their ($2,-7)^{\prime}$
 Allow $\pm 1 / 2$ a small square'.
 FT 'their 8 plots'.
 OR a curve through the 6 given points and $(-2,9)$ and (2,-7).
 Allow intention to pass through their plots.
 (± 1 small square horizontal or vertical.) |
| 14.(c) Line $y=1$ drawn
 -0.8 AND 4.8 | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Must be at least 2 cm long.
 FT intersection of 'their curve' with 'their $y=1$ ' only if exactly two points of intersection and $y \neq 0$.
 If curve drawn, but no line drawn, allow a FT from intersection of 'their curve' with line $y=1$ only if exactly two points of intersection for B0B1. Allow \pm ' 1 small square'. |
| $\begin{array}{rrrrrr}15 . & 4 & 5 & 11 & 12 & \text { OR } \\ & 4 & 6 & 10 & 12 & \text { OR } \\ & 4 & 7 & 9 & 12 & \end{array}$ | B3 | May be written in any order.
 B1 for Range $=8$.
 B1 for Median $=8$.
 B1 for Total $=32$.
 Penalise -1 once only for repeated values, negatives or fractional answers
 e.g. 4, 8, 8, 12 earns B1 B1 B1 -1 (2 marks),
 8, 8, 8, 8 earns B0 B1 B1 -1 (1 mark). |

| $\begin{array}{lc} \text { 16.(a) } & (x-4)(x-3) \\ & (x=) 4 \text { AND } \quad(x=) 3 \end{array}$ | $\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$ | B1 if only $(x=) 4 \quad$ AND $\quad(x=) 3$ seen. (B1) |
| :---: | :---: | :---: |
| 16(b) $25 x^{2}-20 x+4$ | B2 | Otherwise
 B1 for sight of $25 x^{2} \pm k x+4 \quad$ (allow $k=0$)
 B1 for sight of $25 x^{2}-20 x-4$
 Mark final answer. |
| 17.(a)
 Correct framework
 Suitable labelling on both $1^{\text {st }}$ pair of branches AND on both of at least one pair of $2^{\text {nd }}$ set of branches.
 e.g. 'Car', 'No car', 'Before 8', 'After 8'.
 OR Titles of 'Car' and 'Before 8' with branch endings of 'Yes' and 'No'.
 Correct probabilities on first pair of branches 0.7 AND 0.3 (for 'Car', 'No car') OR
 0.4 AND 0.6 (for ‘Before 8', 'After 8')
 Correct probabilities on second two sets of branches 0.4 AND 0.6 correctly placed (following 0.7 and 0.3) OR
 0.7 AND 0.3 correctly placed (following 0.4 and 0.6) | B1 | Accept any unambiguous wording.
 Must be consistent with their labelling. Allow this B1 if no headings given, unless contradicted by, or inconsistent with, further labelling.
 Allow this B1 if no headings given, unless contradicted by, or inconsistent with, further labelling.
 Allow this B1 if only shown on one set of branches. Provided not contradicted on the other set of branches. |
| 17.(b) $\quad$$0.7 \times 0.4$ or equivalent.
 $=0.28$$\quad$ or equivalent. | $\begin{aligned} & \hline \mathrm{M} 1 \\ & \Delta 1 \end{aligned}$ | No FT.
 M1A0 for a final answer of $0 \cdot 28 \%$. Mark final answer. |
| 18.(a) $\mathrm{PA}=12(\mathrm{~cm})$ AND correct theorem given, e.g. 'tangents from an external point are equal in length'. | E1 | Must use the words 'tangents' AND 'equal (identical / same)'.
 Do not accept e.g. ' $\mathrm{PA}=\mathrm{PB}$ '.
 Accept alternative correct answers. |
| 18.(b) $\mathrm{PAO}=90\left({ }^{\circ}\right)$ AND correct theorem given, e.g. 'the tangent at any point on a circle is perpendicular to the radius at that point'. | E1 | Must use the words 'tangent' AND 'radius (diameter)' Allow e.g. 'radius and tangent meet at 90'.
 Do not accept e.g. 'PA and OA meet at 90'. |
| 18.(c) (Area PAOB $=) 2 \times \frac{12 \times 4}{2}$ or equivalent. $=48\left(\mathrm{~cm}^{2}\right)$ | M1 A1 | OR FT 'their PA' $\times 4+\frac{12 \times 4}{2}$
 M0 for 48×2 or $12 \times 4 \times 2(=96)$
 An unsupported final answer of 48 gains both marks. If no marks gained allow SC1 for sight of $24\left(\mathrm{~cm}^{2}\right) \mathrm{OR}$ a correct evaluation of ('their PA' $\times 4$) / 2 . |
| 19.(a) $y=2 \cdot 5 x+3$ | B1 | |
| 19.(b) $\quad y=3 x-5$ | B1 | |
| 19.(c) Line D | B1 | |

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 2 (INTERMEDIATE TIER) 3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline 5.(b) Reflection (in the line) \(x=5\) \& B2 \& B1 for stating 'Reflection'. Ignore extra wording once 'reflection' (or 'reflected') seen. B1 for stating \(x=5\) (simply drawing the line is \(B 0\)) \\
\hline \begin{tabular}{l}
6.(a)
\[
\begin{array}{ccrr}
10 x+15=20 \& \text { OR } \& 2 x+3=4 \\
10 x=5 \& \text { OR } \& 2 x=1
\end{array}
\] \\
\(x=\frac{5}{10} \quad\) OR \(\quad x=\frac{1}{2}\) or equivalent
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT until \(2^{\text {nd }}\) error. \\
Mark final answer. \\
Allow an embedded answer but penalise - 1 if contradicted by \(x \neq 1 / 2\) or 0.5 .
\end{tabular} \\
\hline 6.(b) 7(a+3) \& B1 \& Allow 7(1a + 3) Mark final answer. \\
\hline 6.(c) \(5(n-3)\) or \(5 \times(n-3)\) or \((n-3) 5\) or \((n-3) \times 5\) or \(5 n-15\) \& B2 \& B1 for sight of \(n-3 \times 5\) OR sight of \(5 \times n-3\). B0 for unsupported \(n-15\) OR unsupported \(5 n-3\). Allow ' \(n=5(n-3)\) ' etc Mark final answer. \\
\hline \begin{tabular}{l}
7.(a) YES \\
AND a valid explanation. \\
e.g. ' the other two angles would be (both) \(20\left({ }^{\circ}\right)\) ' e.g. diagram showing (isosceles) triangle with angles of \(140^{\circ}, 20^{\circ}\) and \(20^{\circ}\).
\end{tabular} \& E1 \& \begin{tabular}{l}
A valid explanation implies YES circled if not otherwise contradicted (by circling NO). \\
Explanations must engage with the specific triangle given (with an angle of \(140^{\circ}\)) and not isosceles triangles in general.
\end{tabular} \\
\hline \begin{tabular}{l}
7.(b) \\
NO \\
AND a valid explanation. \\
e.g. ' \(120\left({ }^{\circ}\right)+30\left({ }^{\circ}\right) \neq 180\left({ }^{\circ}\right)\) ' \\
'the two angles add to \(150\left({ }^{\circ}\right)\), not \(180\left({ }^{\circ}\right)\)
\[
120\left({ }^{\circ}\right)+30\left({ }^{\circ}\right)+120\left({ }^{\circ}\right)+30\left({ }^{\circ}\right) \neq 360\left({ }^{\circ}\right)
\] \\
'the four angles add to \(300\left({ }^{\circ}\right)\), not \(360\left({ }^{\circ}\right)\)
\end{tabular} \& E1 \& \begin{tabular}{l}
Allow 'the two angles must equal \(180^{\circ}\). \\
Do not accept 'the four angles must equal \(360^{\circ}\), unless it is made clear that the rhombus has two pairs of equal angles. \\
A valid explanation implies NO circled if not otherwise contradicted (by circling YES).
\end{tabular} \\
\hline 7.(c) \(a+b=150\) \& B1 \& \\
\hline 8.
\[
\begin{array}{ll}
{[\mathrm{n}(\mathrm{G} \cap \mathrm{~S})=]} \& 10 \\
{[\mathrm{n}(\mathrm{~S})=]} \& 13
\end{array}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
Entries must be a whole numbers. \\
[\(\mathrm{n}(\mathcal{E})\)] must be 30 (i.e. no additional 'non-Spanish'). Any blank space to be taken as 0 .
\end{tabular} \\
\hline \begin{tabular}{l}
9. (Length of AD or \(\mathrm{BC}=\)) \(10(\mathrm{~cm})\) \\
(Area of \(\mathrm{ABCD}=5 \times 10=\)) \(50\left(\mathrm{~cm}^{2}\right)\)
\[
\begin{aligned}
(\text { Area APB }=) \frac{\pi \times 5^{2}}{4} \& \\
\& =19 \cdot 6(\ldots . .)\left(\mathrm{cm}^{2}\right)
\end{aligned}
\] \\
\((\) Shaded area \(=50-19 \cdot 6=) 30 \cdot 3(\ldots)\) or \(30 \cdot 4\left(\mathrm{~cm}^{2}\right)\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
May be seen on the diagram or implied in later work. \\
FT \(5 \times\) 'their AD (or BC)'. \\
The \(50\left(\mathrm{~cm}^{2}\right)\) may be shown as two areas of \(25\left(\mathrm{~cm}^{2}\right)\) for B1 B1. \\
SC1 for sight of \(\pi \times 5^{2}\) or equivalent (78.5 \(\ldots\)) \\
FT 'their stated area ABCD' - 'their stated area APB' \\
Note: Sight of (25-'area of APB') + 25 implies the first two \(B\) marks. [rectangle divided in half]
\end{tabular} \\
\hline 9. OCW Organisation and Communication.
Accuracy of writing. \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\text { 10.(a) } \begin{aligned}
\frac{1}{6} \times \frac{1}{4} \& \text { or equivalent } \\
\& =\frac{1}{24} \quad \text { ISW }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& Accept \(0.0416 \ldots\) or 0.0417 or 0.042 for M1A1 M1A0 for ' 1 in 24', '1:24'. \\
\hline 10.(b) \(\quad\)\begin{tabular}{rl}
\(\frac{1}{5}+\frac{1}{10}\) \& or equivalent. \\
\& \(=\frac{3}{10}\) or equivalent. ISW
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \\
\hline 11.
\[
\begin{aligned}
\& \left(A C^{2}=\right) 10 \cdot 8^{2}+14 \cdot 4^{2} \\
\& A C^{2}=324 \quad \text { or } \quad(A C=) \sqrt{ } 324 \\
\& \quad(A C=) 18(\mathrm{~cm})
\end{aligned}
\]
\[
\begin{aligned}
(\text { Area } A C D=) \frac{24 \times 18}{2} \& \\
\& =216\left(\mathrm{~cm}^{2}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Accept equivalent of using cos rule (as \(\cos 90=0\)). \\
F.T. V'their 324' provided M1 gained. \\
Final answer of \(A C=324\) is M1A0A0. \\
Alternative method to find \(A C\) \\
A correct and complete method (using two trigonometric relationships)
\[
A C=18(\mathrm{~cm})
\] \\
FT 'their stated AC'. (May be shown on the diagram) Accept equivalent of using \(1 / 2 \times 24 \times 18 \times \sin 90\) (as \(\sin 90=1\)).
\end{tabular} \\
\hline \begin{tabular}{l}
12. \\
One correct evaluation \(7 \cdot 2 \leq x \leq 7 \cdot 3\) 2 correct evaluations \(7 \cdot 275 \leq x \leq 7 \cdot 295\), one \(<0\), one \(>0\). \\
2 correct evaluations \(7 \cdot 275 \leq x \leq 7 \cdot 285\), one \(<0\), one \(>0\).
\[
x=7 \cdot 28
\]
\end{tabular} \& B1
B1

M1

A1 \& | Correct evaluation regarded as enough to identify if negative or positive. If evaluations not seen accept 'too high' or 'too low'. |
| :--- |
| Look out for equating $x^{3}-5 x=350$ |

\hline 13.(a) an expression \& B1 \&

\hline 13.(b) an equation \& B1 \&

\hline \[
14. $$
\begin{gathered}
\text { (Mid-points) } 2 \cdot 5,(7 \cdot 5), 12 \cdot 5 \text { and } 17 \cdot 5 . \\
8 \times 2 \cdot 5+(0 \times 7 \cdot 5)+7 \times 12 \cdot 5+5 \times 17 \cdot 5 \\
(20+0+87 \cdot 5+87 \cdot 5=195) \\
\div 20 \\
=9.75
\end{gathered}
$$

\] \& | B1 |
| :--- |
| M1 |
| m1 |
| A1 | \& | Allow for sight of mid-points. |
| :--- |
| F.T. 'their mid-points' including bounds, provided they fall within the classes (including lower and upper bounds and used consistently). |
| C.A.O. |

\hline $$
\begin{aligned}
& \text { 15. } \begin{array}{r}
(x=) \frac{360}{15} \text { or } 180-\frac{(15-2) \times 180}{15} \\
\text { or equivalent }=24\left({ }^{\circ}\right) \\
(B R=) 8 \times \cos 24 \text { or } 8 \times \sin (90-24) \\
=7.3(0 \ldots)(\mathrm{cm}) \text { or } 7 \cdot 31(\mathrm{~cm})
\end{array}
\end{aligned}
$$ \& M1

A1
M2

A1 \& | May be seen in parts. |
| :--- |
| FT 'their stated value for x ' $\left(x<90^{\circ}\right)$ |
| $M 1$ for $\frac{B R}{8}=\cos 24$ or $\frac{B R}{8}=\sin (90-24)$ |
| Accept equivalent of using sin rule (as $\sin 90=1$). |
| Alternative method to find $B R$ |
| A correct and complete method (using two trigonometric relationships and possibly |
| $B R=7 \cdot 3(0 \ldots)(\mathrm{cm})$ or $7 \cdot 31(\mathrm{~cm})$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 16. \(2 \cdot 656 \times 10^{6}\) \& B2 \& \begin{tabular}{l}
B1 for a correct value but not in standard form. Mark final answer. \\
B1 for sight of 2656000. \\
SC1 for \(2.66 \times 10^{6}\) or \(2.7 \times 10^{6}\) or \(2.6 \times 10^{6}\) or \(2.65 \times 10^{6}\)
\end{tabular} \\
\hline 17. \begin{tabular}{c}
Sight of \(24 \cdot 5\) AND \(15 \cdot 5\) \\
OR \\
Sight of \(23 \cdot 5\) AND \(14 \cdot 5\)
\end{tabular}
\(2(24 \cdot 5+15 \cdot 5)-2(23 \cdot 5+14 \cdot 5) \quad\) or equivalent
\(=4(\mathrm{~cm})\) \& B1
M1

A1 \& | Sight of (Greatest =) 80 OR (Least =) 76 implies B1 |
| :--- |
| FT only for upper bounds of 24.4 AND 15.4 or 24.49 AND 15.49 (lower bounds must be 23.5 AND 14.5 else M0) |
| CAO |
| If M0, award B1 and an SC1 for sight of (Greatest $=$) 80 AND (Least $=$) 76 |

\hline Alternative method.

$$
\begin{aligned}
& \text { Difference between least and greatest } \\
& \text { length for each side }=1(\mathrm{~cm}) \\
& \qquad \begin{aligned}
& 4 \times 1 \\
&=4(\mathrm{~cm})
\end{aligned}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& B 1 \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& FT only for differences of 0.9 or 0.99 CAO

\hline | 18. |
| :--- |
| Method to eliminate variable e.g. equal coefficients with appropriate addition or subtraction. |
| First variable found, $x=4$ or $y=-1$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found | \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 | \& | No marks for trial and improvement. Allow 1 error in one term, not the term with equal coefficients. |
| :--- |
| C.A.O. |
| F.T. their ' 1 st variable'. |
| Award no marks for unsupported correct answers. |

\hline | 19.(a)(i) Correct reason given. |
| :--- |
| e.g. 'An angle at the circumference subtended by a diameter is a right angle'. |
| ' line AC is a diameter' | \& E1 \& | Accept any correct unambiguous wording. The key word is 'diameter'. |
| :--- |
| Allow eg 'angle in a semicircle is 90°, 'line AC goes through the centre'. 'opposite a diameter' |
| Do not accept 'because it's a right angle'. |

\hline \[
$$
\begin{aligned}
& \text { 19.(a)(ii) } \quad \tan x=\frac{7 \cdot 5}{4 \cdot 7} \\
& x=\tan ^{-1}(7 \cdot 5 / 4 \cdot 7) \text { or } \tan ^{-1} 1.6 \text { or } \tan ^{-1} 1.59(\ldots) \\
& \\
& =57 \cdot 9(\ldots)\left(\left(^{\circ}\right) \text { or } 57 \cdot 8(\ldots)\left({ }^{\circ}\right) \text { or } 58\left({ }^{\circ}\right)\right.
\end{aligned}
$$

\] \& | M1 |
| :--- |
| m1 |
| A1 | \& | Implies M1. |
| :--- |
| C.A.O. |
| Alternative method to find x |
| A correct and complete method (using Pythagoras's |
| theorem and a trigonometric relationship). M2 $\mathrm{x}=57 \cdot 9(\ldots)\left({ }^{\circ}\right) \text { or } 57 \cdot 8(\ldots)\left({ }^{\circ}\right) \text { or } 58\left(^{\circ}\right) \text { CAO A1 }$ |

\hline | 19.(b) $\quad(y=) 58\left(^{\circ}\right)$ |
| :--- |
| Correct circle theorem given. |
| e.g. 'angles (at the circumference) subtended by the same chord (or arc) are equal', 'angles in the same segment (are equal)'. | \& B1

E1 \& | Strict FT of 'their x '. |
| :--- |
| Accept any correct unambiguous wording. Allow eg 'angles on the same chord (are equal)' Do not accept e.g. 'they are equal' on its own. |

\hline
\end{tabular}

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 1 (HIGHER TIER) 3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

| GCSE Mathematics Unit 1: Higher Tier | Mark | Comments |
| :---: | :---: | :---: |
| 1.(a) $5 \mathrm{n}-3$ | B2 | B1 for sight of 5n. Mark final answer. |
| 1.(b) 17 | B1 | |
| 1.(c) $2 \mathrm{n}+2$ OR $2(\mathrm{n}+1)$ | B2 | If $2 \mathrm{n}+2$ is not their final answer allow B1 for sight of $2 n+2$ in earlier work.
 B1 for a correct answer not simplified or incorrectly simplified e.g. $\mathrm{n}+\mathrm{n}+2$. |
| 2.(a)(i)
 ε | B1 | |
| 2.(a)(ii)
 ε | B1 | |
| 2.(b) A valid statement.
 e.g. 'all multiples of 6 are also multiples of 3 ' 'because 3 goes into 6', ' 6 is a multiple of 3 '. ' 3 is a factor of 6 '. | E1 | Allow e.g. '(set) C is a subset of (set) A' 'it is a multiple of 3 ' $6,12, \ldots$ are also multiples of 3 '. |
| 3.(a) $90-7$ | B2 | B1 for each. |
| 3.(b) At least 6 correct plots and no incorrect plot.
 A smooth curve drawn through their plots. | $\begin{aligned} & \text { P1 } \\ & \text { C1 } \end{aligned}$ | FT 'their ($-2,9$)' and 'their ($2,-7$)'
 Allow $\pm 1 / 2$ a small square'.
 FT 'their 8 plots'.
 OR a curve through the 6 given points and $(-2,9)$ and $(2,-7)$.
 Allow intention to pass through their plots.
 (± 1 small square horizontal or vertical.) |
| $\begin{array}{llll} \hline \text { 3.(c) } \quad \text { Line } \mathrm{y}=1 \text { drawn } \\ -0.8 & \text { AND } & 4.8 \end{array}$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Must be at least 2 cm long.
 FT intersection of 'their curve' with 'their $y=1$ ' only if exactly two points of intersection and $y \neq 0$.
 If curve drawn, but no line drawn, allow a FT from intersection of 'their curve' with the line $\mathrm{y}=1$ only if exactly two points of intersection for B0 B1. Allow \pm ' 1 small square'. |

| 4. (One part =) $(£) 210 \div 3 \quad=(£) 70$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | |
| :---: | :---: | :---: |
| $\begin{array}{r} \text { (Total amount }=\text {) } \\ \begin{aligned} 14 \times(£) 70 \text { OR } & (£) 210+4 \times(£) 70+7 \times(£) 70 \\ & =(£) 980 \end{aligned} \end{array}$ | m1 A1 | FT 'their ($£$) 70 ' only if M1 gained.
 Allow m1 for sight of 210 AND 280 AND 490 together as the three shares.
 For $210 \div 3 \times 14 \begin{array}{r}\text { M3 } \\ \\ =980 \quad A 1\end{array}$ |
| Organisation and Communcation.
 Accuracy of writing. | OC' | For OC1, candidates will be expected to:
 - present their response in a structured way
 - explain to the reader what they are doing at each step of their response
 - lay out their explanation and working in a way that is clear and logical
 - write a conclusion that draws together their results and explains what their answer means
 For W1, candidates will be expected to:
 - show all their working
 - make few, if any, errors in spelling, punctuation and grammar
 - use correct mathematical form in their working
 - use appropriate terminology, units, etc |
| 5. $\begin{array}{rrrrr} \hline 4 & 5 & 11 & 12 & \text { OR } \\ 4 & 6 & 10 & 12 & \text { OR } \\ 4 & 7 & 9 & 12 & \end{array}$ | B3 | May be written in any order.
 B1 for Range $=8$.
 B1 for Median $=8$.
 B1 for Total $=32$.
 Penalise - 1 once only for repeated values, negatives or fractional answers
 e.g. 4, 8, 8, 12 earns B1 B1 B1 -1 (2 marks),
 8, 8, 8, 8 earns B0 B1 B1 - 1 (1 mark). |
| | $\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$ | B1 for ($x \ldots 4$)($x \ldots 3$). Ignore ${ }^{\prime}=0^{\prime}$.
 Strict FT from their brackets.
 Allow the following.
 $\begin{array}{cccc}\mathrm{B} 2 \text { for } & x-4(=0) & \text { AND } & x-3(=0) \\ & & \text { (B1) } \\ & x=) 4 & \text { AND } & (x=3\end{array}$
 B1 for $x+4(=0)$ AND $x+3(=0) \quad$ (B0)
 ($\mathrm{x}=$) -4 AND $\quad(\mathrm{x}=)-3$
 B1 if only $(x=) 4 \quad$ AND $\quad(x=) 3$ seen. (B1) |
| 6(b) $\quad 25 x^{2}-20 x+4$ | B2 | Otherwise
 B1 for sight of $25 x^{2} \pm k x+4 \quad$ (allow $k=0$) B1 for sight of $25 x^{2}-20 x-4$ Mark final answer. |

\begin{tabular}{|c|c|c|}
\hline 7.(a) Correct framework \& B1 \& \\
\hline \begin{tabular}{l}
Suitable labelling on both \(1^{\text {st }}\) pair of branches AND on both of at least one pair of \(2^{\text {nd }}\) set of branches. e.g. 'Car', 'No car', 'Before 8', 'After 8'. \\
OR Titles of 'Car' and 'Before 8' with branch endings of 'Yes' and 'No'.
\end{tabular} \& B1 \& Accept any unambiguous wording. \\
\hline Correct probabilities on first pair of branches 0.7 AND 0.3 (for 'Car', 'No car') OR 0.4 AND \(0 \cdot 6\) (for 'Before 8', 'After 8') \& B1 \& Must be consistent with their labelling. Allow this B1 if no headings given, unless contradicted by, or inconsistent with, further labelling. \\
\hline \begin{tabular}{l}
Correct probabilities on second two sets of branches 0.4 AND 0.6 correctly placed (following 0.7 and 0.3) OR \\
0.7 AND 0.3 correctly placed (following 0.4 and 0.6)
\end{tabular} \& B1 \& \begin{tabular}{l}
Allow this B 1 if no headings given, unless contradicted by, or inconsistent with, further labelling. \\
Allow this B1 if only shown on one set of branches. Provided not contradicted on the other set of branches.
\end{tabular} \\
\hline 7.(b) \(\quad \begin{array}{ll}0.7 \times 0.4 \& \begin{array}{l}\text { or equivalent. } \\ =0.28\end{array} \quad \text { or equivalent. }\end{array}\) \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
No FT. \\
M1A0 for a final answer of \(0 \cdot 28 \%\). Mark final answer.
\end{tabular} \\
\hline 8.(a) \(\mathrm{PA}=12(\mathrm{~cm})\) AND correct theorem given, e.g. 'tangents from an external point are equal in length'. \& E1 \& \begin{tabular}{l}
Must use the words 'tangents' AND 'equal (identical/same)'. \\
Do not accept e.g. 'PA = PB'. \\
Accept alternative correct answers.
\end{tabular} \\
\hline 8.(b) PÂO \(=90\left({ }^{\circ}\right)\) AND correct theorem given, e.g. 'the tangent at any point on a circle is perpendicular to the radius at that point'. \& E1 \& Must use the words 'tangent' AND 'radius (diameter)' Allow e.g. 'radius and tangent meet at 90'. Do not accept e.g. 'PA and OA meet at 90'. \\
\hline 8.(c) \(\quad\) (Area \(\mathrm{PAOB}=) 2 \times \frac{12 \times 4}{2}\) or equivalent.
\[
=48\left(\mathrm{~cm}^{2}\right)
\] \& M1

A1 \& | OR FT 'their PA' $\times 4+\frac{12 \times 4}{2}$ |
| :--- |
| M0 for 48×2 or $12 \times 4 \times 2(=96)$ |
| An unsupported final answer of 48 gains both marks. If no marks gained allow SC1 for sight of $24\left(\mathrm{~cm}^{2}\right) \mathrm{OR}$ a correct evaluation of ('their PA' $\times 4$) / 2 . |

\hline 9.(a) $y=2 \cdot 5 x+3$ \& B1 \&

\hline 9.(b) $\quad \mathrm{y}=3 \mathrm{x}-5$ \& B1 \&

\hline 9.(c) Line D \& B1 \&

\hline 10.(a) $t \alpha 1 / g$ OR $t=k / g$

$$
36=k / 25 \quad \text { OR } \quad k=900
$$

$$
t=900 / \mathrm{g}
$$ \& B1

M1

A1 \& | Allow $t \alpha k / g$ |
| :--- |
| FT from $y<1 / x^{n}$ with $n \neq 1, \mathrm{n}>0$ |
| No FT from direct proportion |
| M1 implies B1. |
| May be seen explicitly in part (b). |
| Do not allow $t \alpha 900 / g$ for the A mark |

\hline 10.(b) (900/20 =) 45 (days) \& B1 \& FT 'their formula' only if non-linear.

\hline 10.(c) Sight of 900/40

22 (goats) \& M1

A1 \& | FT 'their formula' only if non-linear and of equivalent difficulty |
| :--- |
| M1 A0 for an answer of 22.5 or 23 |
| For A1, FT for equivalent difficulty i.e. need to round down an answer with a decimal part of 0.5 or over. Allow use of trial and improvement for M1, provided 22 or 23 seen. |
| A0 for incorrect working e.g. 90/4 given as 22.2, leading to 22. |

\hline 11. (a) $\quad\left({ }^{3} \sqrt{m}\right)^{2}$ \& B1 \&

\hline 11. (b) $p^{\frac{1}{4}}$ \& B1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
12. \(6(2 x+1)-4(3 x-5)\) as a numerator within a single fraction \\
\((3 x-5)(2 x+1)\) as a denominator \\
h26 / \((3 x-5)(2 x+1)\)
\end{tabular} \& M1
M1
A1 \& \begin{tabular}{l}
Allow intention of brackets, e.g. \(6 \times 2 x+1-4 \times 3 x-5\) \\
CAO. \\
Allow \(26 /\left(6 x^{2}-7 x-5\right)\) \\
(If expanded, the denominator must be correct.) If M1 M1 A1, penalise further incorrect work -1. If no marks awarded, then SC1 for sight of 26.
\end{tabular} \\
\hline 13. (Linear scale factor \(=)^{3} \sqrt{(1280 / 20)}(=4)\)
\[
\sqrt[3]{ } \sqrt{ }(1280 / 20) \times 2 \cdot 3 \quad=9 \cdot 2(\mathrm{~cm})
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Or equivalent. \\
Accept a method based on ratios \\
e.g. \(1: 4\) (from \(20: 1280=1: 64=1: 4^{3}\)) \\
FT their derived scale factor (from \({ }^{3} \sqrt{ }\)). \\
SC1 for an answer of 18.4 (using s.f. of 8 , from \(\sqrt{ } 64\)).
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method (using reciprocal scale factor) \\
(Linear scale factor \(=) \sqrt[3]{(20 / 1280)}(=1 / 4)\)
\[
\begin{aligned}
2 \cdot 3 \div \sqrt[3]{ }(20 / 1280) \quad O R 1 /{ }^{3} \sqrt{ }(20 / 1280) \& \times 2 \cdot 3 \\
\& =9 \cdot 2(\mathrm{~cm})
\end{aligned}
\]
\end{tabular} \& B1
M1
A1 \& \begin{tabular}{l}
Or equivalent. \\
Accept a method based on ratios. FT their derived scale factor (from \({ }^{3} \sqrt{ }\)).
\end{tabular} \\
\hline \begin{tabular}{l}
14. (a) \(10 x=8 \cdot 121212 \ldots . .\). and \(1000 x=812 \cdot 1212 \ldots\). \\
with an attempt to subtract on both sides
\[
804 / 990(=402 / 495=134 / 165)
\]
\end{tabular} \& M1 \& \begin{tabular}{l}
Or \(x\) and \(100 x\), or equivalent. Or a complete alternative method. \\
An answer of 80•4/99 gains M1 only. ISW
\end{tabular} \\
\hline \[
\begin{aligned}
\frac{\text { Alternative method }}{0.8+0.0121212 \ldots . .} \& =8 / 10+12 / 990 \text { or equivalent } \\
804 / 990(\& =402 / 495=134 / 165)
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& ISW \\
\hline 14. (b) \(6 \sqrt{2}\) \& B1 \& \\
\hline 14. (c) \(7 \times 3+7 \sqrt{5}-3 \times 2 \sqrt{5}-2(\sqrt{5})^{2}\) or equivalent \(=11+\sqrt{ } 5\) \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
Mark final answer. \\
Accept \(11+1 \sqrt{ } 5\). \\
If no marks awarded, SC1 for 3 correctly simplified terms i.e. \(21,7 \sqrt{ } 5,-6 \sqrt{ } 5,-10\).
\end{tabular} \\
\hline \begin{tabular}{l}
15. \\
- \(F G=H G\) (since \(G\) is the midpoint of \(F H\)) \\
- \(E G\) is a common side \\
- Angle \(E G F=\) Angle \(E G H\) (since \(E G\) and \(F H\) are perpendicular)
\end{tabular} \& B1
B1
B1 \& Do not accept indications on the diagram. \\
\hline SAS (or two sides and the included angle) so that EFG and EHG are congruent triangles. \& B1 \& FT from B2 previously awarded. Must be convincing. Do not allow 'two sides and an angle'. \\
\hline \begin{tabular}{l}
Allow alternative method \\
- \(F G=H G\) (since \(G\) is the midpoint of \(F H\)) \\
- EG is a common side \\
- EF = EH using Pythagoras \\
SSS (or all corresponding sides equal) so that EFG and EHG are congruent triangles.
\end{tabular} \& B1
B1
B1

B1 \& | Do not accept indications on the diagram. |
| :--- |
| Must be convincing. An unsupported statement that $E F=E H$, or that triangle is 'isosceles', is insufficient. FT from B2 previously awarded. Allow RHS. Must be convincing. |

\hline
\end{tabular}

| 16. Sight of $4 y^{2}=3+m y^{2}$
 $(4-m) y^{2}=3$ OR $4 y^{2}-m y^{2}=3$ or equivalent $\begin{array}{rlc} y^{2}=3 /(4-m) & \text { OR } & y^{2}=-3 /(m-4) \\ y= \pm \sqrt{ }[3 /(4-m)] & \text { OR } & y= \pm \sqrt{ }[-3 /(m-4)] \end{array}$ | B1 B1 B1 B1 | FT until $2^{\text {nd }}$ error for equivalent level of difficulty. Squaring.
 Allow $2^{2} y^{2}$ or $(2 y)^{2}$ for $4 y^{2}$.
 Isolating terms in y^{2}.
 FT a formula with three or more terms AND with at least two terms in y^{2}.
 Isolating y^{2}.
 Taking square root.
 Allow omission of \pm. |
| :---: | :---: | :---: |
| 17. (a) $y=f(x)+5$ | B1 | Correct notation required. |
| 17. (b) $y=-f(x)$ | B1 | Correct notation required. |
| 18. Sight of $x=(\sqrt{ } \pi) \times r$ OR $x=\sqrt{ }\left(\pi r^{2}\right)$ or equivalent
 Convincing concluding argument e.g. x is irrational since π (and therefore $\sqrt{ } \pi$) is irrational. | B1 | Allow an equivalent expression, e.g. $r=x /(\sqrt{ } \pi)$ or $r=\sqrt{ }\left(x^{2} / \pi\right)$.
 Allow use of 3.14 for π.
 E1 depends on B1.
 Accept
 e.g. multiplying an integer by $\sqrt{ } \pi$ will not produce another integer; multiplying an integer by $\sqrt{ } \pi$ will produce an infinite decimal.
 Do not accept a reason based on $\sqrt{ } \pi$ not being a whole number.
 Consideration of a specific numerical case gains no credit. |
| Allow an alternative method
 x^{2} and πr^{2} both seen WITH a related statement about
 - squares of integers, or
 - rational / irrational numbers, or
 - (infinite) decimal numbers.
 e.g.
 πr^{2} (or $3.14 r^{2}$) cannot be a square number;
 multiplying an integer by π (or 3.14) cannot produce a
 square number;
 πr^{2} is irrational;
 π times an integer (squared) is a decimal (or cannot be an integer). | E1 | For $x^{2}=\pi r^{2}$ allow an equivalent equation, e.g. $r^{2}=x^{2} / \pi$.
 Allow use of 3.14 for π.
 Do not accept a statement that $3.14 r^{2}$ is not an integer or that $3.14 r^{2}$ is irrational. |
| Convincing concluding argument leading to x (not x^{2}) being a non-integer
 e.g. x is irrational since x^{2} is irrational; x is not an integer since x^{2} is a decimal. | E1 | Depends on previous E1
 Consideration of a specific numerical case gains no credit. |

\begin{tabular}{|c|c|c|}
\hline 19. (a) \(1 / 11 \times 6 / 10\) or equivalent
\[
=6 / 110(=3 / 55)
\] \& M1
A1 \& ISW \\
\hline \[
\text { 19. (b) } \begin{aligned}
\& 6 / 11 \times 5 / 10+4 / 11 \times 3 / 10[+1 / 11 \times 0 / 10] \\
\& =42 / 110(=21 / 55)
\end{aligned}
\] \& M2
A1 \& \begin{tabular}{l}
FT use of consistent incorrect denominator e.g. 120 \\
Full method for finding \\
\(P(R, R)+P(G, G)[+P(Y, Y)]\) \\
M1 for sight of \(6 / 11 \times 5 / 10\) or \(4 / 11 \times 3 / 10\) \\
ISW \\
If no marks, SC1 for an answer of 53/121 (method with replacement)
\end{tabular} \\
\hline 19. (c) \(1-7 / 11 \times 6 / 10\) or equivalent
\[
=68 / 110(=34 / 55)
\] \& M2
A1 \& \begin{tabular}{l}
FT use of consistent incorrect denominator e.g. 120 M1 for \(7 / 11 \times 6 / 10\) \\
ISW
\end{tabular} \\
\hline \[
\begin{aligned}
\& \frac{\text { Alternative method } 1}{1-[6 / 11 \times 5 / 10+6 / 11 \times 1 / 10+1 / 11 \times 6 / 10]} \\
\& \text { or equivalent } \\
\& \quad=68 / 110(=34 / 55)
\end{aligned}
\] \& M2

A1 \& | FT use of consistent incorrect denominator e.g. 120 Full method for finding $1-[P(R, R)+P(R, Y)+P(Y, R)]$ |
| :--- |
| Allow M1 if any one of the three subtracted products is omitted. |
| ISW |

\hline | Alternative method 2 |
| :--- |
| $4 / 11 \times 3 / 10+4 / 11 \times 7 / 10+7 / 11 \times 4 / 10$ or equivalent $=68 / 110(=34 / 55)$ | \& M2

A1 \& | FT use of consistent incorrect denominator e.g. 120 Full method for finding $P(G, G)+P\left(G, G^{\prime}\right)+P\left(G^{\prime}, G\right) .$ |
| :--- |
| Allow M1 for the sum of any two of these three products |
| NB: $P\left(1^{\text {st }}\right.$ sock green) is equivalent to $P(G, G)+$ $P\left(G, G^{\prime}\right)$ or to $P(G, G)+P\left(G^{\prime}, G\right)$ (i.e. credit cannot be given for only $P\left(1^{\text {st }}\right.$ sock green $)=4 / 11$ without considering compound events) |
| ISW |

\hline | Alternative method 3 $4 / 11 \times 3 / 10+4 / 11 \times 6 / 10+4 / 11 \times 1 / 10+6 / 11 \times 4 / 10+$ |
| :--- |
| $1 / 11 \times 4 / 10$ or equivalent $=68 / 110(=34 / 55)$ | \& M2

A1 \& | FT use of consistent incorrect denominator e.g. 120 |
| :--- |
| Full method for finding $P(G, G)+P(G, R)+P(G, Y)+P(R, G)+P(Y, G) .$ |
| Allow M1 for the sum of any two of the following |
| - $P(G, G)$ |
| - $P(G, R)+P(G, Y)$ |
| - $P(R, G)+P(Y, G)$ |
| $N B: P\left(1^{\text {st }}\right.$ sock green) is equivalent to $P(G, G)+P(G, R)+P(G, Y) \text { or to } P(G, G)+P(R, G)+P(Y, G)$ |
| (i.e. credit cannot be given for only $P\left(1^{\text {st }}\right.$ sock green) $=4 / 11$ without considering compound events) |
| ISW |

\hline \& \& if no marks, SC1 for an answer of $72 / 121$ [from $1-7 / 11 \times 7 / 11$] (method with replacement)

\hline
\end{tabular}

GCSE MARKING SCHEME

AUTUMN 2020

GCSE
MATHEMATICS - UNIT 2 (HIGHER TIER) 3300U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2020 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline 4.(a) an expression \& B1 \&

\hline 4.(b) an equation \& B1 \&

\hline $$
\text { 5. } \begin{gathered}
\text { (Mid-points) } 2 \cdot 5,(7 \cdot 5), 12 \cdot 5 \text { and } 17 \cdot 5 . \\
8 \times 2 \cdot 5+(0 \times 7 \cdot 5)+7 \times 12 \cdot 5+5 \times 17 \cdot 5=195) \\
(20+00+87 \cdot 5+87 \cdot 5=195) \\
+20=9.75
\end{gathered}
$$ \& B1
M1

m1

A1 \& | Allow for sight of mid-points. |
| :--- |
| F.T. 'their mid-points' including bounds, provided they fall within the classes (including lower and upper bounds and used consistently). |
| C.A.O. |

\hline 6. $(x=) \frac{360}{15}$ or $180-\frac{(15-2) \times 180}{15}$ or equivalent

$$
=24\left({ }^{\circ}\right)
$$

$$
\begin{array}{r}
(\mathrm{BR}=) 8 \times \cos 24 \text { or } 8 \times \sin (90-24) \\
=7 \cdot 3(0 \ldots)(\mathrm{cm}) \text { or } 7 \cdot 31(\mathrm{~cm})
\end{array}
$$ \& M1

A1
M2

A1 \& | May be seen in parts. |
| :--- |
| FT 'their stated value for $x^{\prime}\left(x<90^{\circ}\right)$ |
| $M 1$ for $\frac{B R}{8}=\cos 24$ or $\frac{B R}{8}=\sin (90-24)$ |
| Accept equivalent of using \sin rule (as $\sin 90=1$). |
| Alternative method to find $B R$ |
| A correct and complete method (using two trigonometric relationships and possibly Pythagoras's theorem) |
| $B R=7 \cdot 3(0 \ldots)(\mathrm{cm})$ or 7.31(cm) |

\hline 7. $2 \cdot 656 \times 10^{6}$ \& B2 \& | B1 for a correct value but not in standard form. Mark final answer. |
| :--- |
| B1 for sight of 2656000 . |
| SC1 for 2.66×10^{6} or 2.7×10^{6} or 2.6×10^{6} or 2.65×10^{6} |

\hline $\begin{array}{llll}\text { 8. } & & \text { Sight of } 24 \cdot 5 \text { AND } & 15 \cdot 5 \\ & \text { OR } & \text { Sight of } 23 \cdot 5 \text { AND } & 14.5\end{array}$ $2(24 \cdot 5+15 \cdot 5)-2(23 \cdot 5+14 \cdot 5)$ or equivalent $=4(\mathrm{~cm})$ \& B1
M1

A1 \& | Sight of (Greatest =) 80 OR (Least =) 76 implies B1 |
| :--- |
| FT only for upper bounds of 24.4 AND 15.4 or 24.49 AND 15.49 (lower bounds must be 23.5 AND 14.5 else M0) |
| CAO |
| If M0, award B1 and an SC1 for sight of (Greatest $=$) 80 AND (Least $=$) 76 |

\hline | Alternative method. |
| :--- |
| Difference between least and greatest length for each side $=1(\mathrm{~cm})$ 4×1 $=4(\mathrm{~cm})$ | \& B1

M1
A1 \& FT only for differences of 0.9 or 0.99 CAO

\hline | 9. |
| :--- |
| Method to eliminate variable e.g. equal coefficients with appropriate addition or subtraction. |
| First variable found, $x=4$ or $y=-1$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found | \& M1

A1
m1

A1 \& | No marks for trial and improvement. |
| :--- |
| Allow 1 error in one term, not the term with equal coefficients. |
| C.A.O. |
| F.T. their ' $1^{\text {st }}$ variable'. |
| Award no marks for unsupported correct answers. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
10.(a)(i) Correct reason given. \\
e.g. 'An angle at the circumference subtended by a diameter is a right angle'. \\
' line AC is a diameter'
\end{tabular} \& E1 \& \begin{tabular}{l}
Accept any correct unambiguous wording. The key word is 'diameter'. \\
Allow eg 'angle in a semicircle is \(90^{\circ}\), 'line AC goes through the centre'. 'opposite a diameter' \\
Do not accept 'because it's a right angle'.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 10.(a)(ii) } \quad \tan x=\frac{7 \cdot 5}{4 \cdot 7} \\
\& x=\tan ^{-1}(7 \cdot 5 / 4 \cdot 7) \text { or } \tan ^{-1} 1.6 \text { or } \tan ^{-1} 1.59(\ldots) \\
\& =57 \cdot 9(\ldots)\left({ }^{\circ}\right) \text { or } 57 \cdot 8(\ldots)\left({ }^{\circ}\right) \text { or } 58\left({ }^{\circ}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
m1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Implies M1. \\
C.A.O. \\
Alternative method to find \(x\) \\
A correct and complete method (using Pythagoras's theorem and a trigonometric relationship). M2 \(\mathrm{x}=57.9(\ldots)\left({ }^{\circ}\right)\) or \(57 \cdot 8(\ldots)\left({ }^{\circ}\right)\) or \(58\left({ }^{\circ}\right)\) CAO A1
\end{tabular} \\
\hline \begin{tabular}{l}
10.(b) \(\quad(y=) 58\left({ }^{\circ}\right)\) \\
Correct circle theorem given. \\
e.g. 'angles (at the circumference) subtended by the same chord (or arc) are equal', 'angles in the same segment (are equal)'.
\end{tabular} \& B1
E1 \& \begin{tabular}{l}
Strict FT of 'their \(x\) '. \\
Accept any correct unambiguous wording. Allow eg 'angles on the same chord (are equal)' Do not accept e.g. 'they are equal' on its own.
\end{tabular} \\
\hline 11. \(2^{400}\) \& B2 \& B1 for (\(\left.2^{100}\right)^{4}\) OR sight of \(2^{4}\) \\
\hline \[
\text { 12. } \begin{aligned}
(\text { Height }=) \frac{3 \times 5533}{825} \text { OR } \frac{5533}{\frac{1}{3} \times 825} \& \\
\& =20 \cdot 1(2 \mathrm{~cm})
\end{aligned}
\] \& M2
A1 \& \begin{tabular}{l}
M1 for \(5533=1 / 3 \times\) height \(\times 825\) or equivalent. \\
Allow an answer of 20(cm) from correct working.
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method (finding the radius first): \\
Use \(A=\pi r^{2}\) to evaluate \(r\) or \(r^{2}\).
\[
\begin{aligned}
(\text { Height }=) \& \frac{3 \times 5533}{\pi \times 16.2(05 \ldots)^{2}} \text { OR } \frac{5533}{\frac{1}{3} \times \pi \times 16.2(05 . . .)^{2}} \text { OR } \\
\& \frac{3 \times 5533}{\pi \times 262.6(\ldots)} \text { OR } \frac{5533}{\frac{1}{3} \times \pi \times 262.6(\ldots)} \\
= \& 20 \cdot 1(2 \ldots \mathrm{~cm})
\end{aligned}
\]
\end{tabular} \& M2

A1 \& | Allow use of $\pi=3 \cdot 14,3 \cdot 142$ or $3 \cdot 14(59 \ldots)$. |
| :--- |
| When using the π button on the calculator, $r=16 \cdot 2(05 \ldots) O R r^{2}=262 \cdot 6(\ldots) .$ |
| There will be no FT for any radius other than $r=16 \mathrm{~cm}$, from working seen. |
| M1 for $5533=1 / 3 \times$ height $\times \pi \times 16.2(05 \ldots)^{2}$ or equivalent. |
| Allow M1 for use of $r=16(\mathrm{~cm})$ |
| Allow an answer of 20(cm) from correct working. Accept an answer in the range $20 \cdot 10$ to $20 \cdot 143$ (cm) $F T$ base radius $=16 \mathrm{~cm}$: Allow an answer in the range $20 \cdot 6(\mathrm{~cm})$ to $20 \cdot 65(\mathrm{~cm})$ OR 21(cm) from correct working. |

\hline 13.(a) $(2 x+9)(2 x-9)$ \& B2 \& B1 for (2x ... 9) (2x ... 9)

\hline 13.(b) $(7 x-4)(x+2)$ \& B2 \& B1 for (7x ... 4) ($x \ldots 2$)

\hline 13.(c) $(x+2)^{2}(x+7) \mathrm{OR}(x+2)(x+2)(x+7)$ \& B2 \& | $\begin{aligned} & \text { B1 for }(x+2)^{2}(x+2+5) \text { OR } \\ & (x+2)\left[(x+2)^{2}+5(x+2)\right] \text { OR } \\ & (x+7)\left(x^{2}+4 x+4\right) \text { OR } \\ & (x+2)\left(x^{2}+9 x+14\right) \end{aligned}$ |
| :--- |
| Allow B1 for $(x+2)^{2}(x+k)$ where $k \neq 0,2$ or 7 . |

\hline 14. $-1 / 2$ or equivalent \& B2 \& B1 for -2 or $1 / 2$.

\hline 15. $2 n^{2}+1$ or equivalent $\quad=20001$ \& B2

B1 \& | B1 for sight of $2 n^{2}$ OR for sight of consistent $2^{\text {nd }}$ difference 4. |
| :--- |
| FT from their $2 n^{2} \pm k$, where $k \neq 0 \mathrm{OR}$ from their $2 n^{2} \pm a n$, where $a \neq 0$ OR from their $2 n^{2} \pm a n \pm k$, where $a \neq 0, k \neq 0$. An unsupported answer of 20001 gains all 3 marks. If no marks, award SC1 for an unsupported answer of 20000. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
16. Use of 7175 AND (1)•2345 or (1)23•45(\(\div 100)\) \\
\(7175 \times 1 \cdot 2345\)
\[
=(£) 8858
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Or equivalent complete method. \\
FT for 'their 7175' provided \(7170 \leq x<7180\) \\
and 'their 1.2345 ' provided \(1.234 \leq y<1.235\) \\
Sight of \((£) 8857 \cdot 53(75)\) or \((£) 8857 \cdot 54\) implies B1M1. CAO.
\end{tabular} \\
\hline \begin{tabular}{l}
17.(a) General cosine curve with appropriate orientation and position. \\
Correct sketch with curve passing through (\(0^{\circ}, 1\)), (\(90^{\circ}, 0\)) and \(\left(270^{\circ}, 0\right)\) and approximately (\(180^{\circ},-1\)) and \(\left(360^{\circ}, 1\right)\) \\
AND \\
\(90\left({ }^{\circ}\right), 180\left({ }^{\circ}\right), 270\left({ }^{\circ}\right), 360\left({ }^{\circ}\right)\) indicated on the \(x\)-axis AND \\
-1 and 1 indicated on the \(y\)-axis.
\end{tabular} \& M1
A1 \& \begin{tabular}{l}
Ignore curve shown for values \(x<0^{\circ}\) or \(x>360^{\circ}\). \\
Accept \(180^{\circ}\) as mid-way between \(0^{\circ}\) and \(360^{\circ}\) if unlabelled. \\
Accept \(360^{\circ}\) as unlabelled provided the sketch does not exceed \(360^{\circ}\).
\end{tabular} \\
\hline 17.(b) \begin{tabular}{ll}
\& \(46\left({ }^{\circ}\right)\) AND \(314\left({ }^{\circ}\right)\) \\
\& OR \\
\& \(45 \cdot 6\left({ }^{\circ}\right)\) AND \(314 \cdot 4\left({ }^{\circ}\right)\) \\
\& OR \\
\& \(45 \cdot 57\left(29 \ldots .^{\circ}\right)\) AND \(314 \cdot 4\left(27 \ldots .^{\circ}\right)\).
\end{tabular} \& B2 \& \begin{tabular}{l}
B1 for sight of one correct angle. Allow embedded answers. \\
If more than two answers offered award B1 for sight of one correct angle. \\
If no marks, awarded SC1 for truncated answers \\
\(45\left({ }^{\circ}\right)\) AND \(315\left({ }^{\circ}\right)\) OR \(45 \cdot 5\left({ }^{\circ}\right)\) AND \(314 \cdot 5\left({ }^{\circ}\right)\).
\end{tabular} \\
\hline 18. \(\begin{array}{r}0.7 \times 0.2 \times 0.1 \times 6 \\ =0.084 \text { or equivalent }\end{array}\) \& M2 \& M1 for sight of \(0.7 \times 0.2 \times 0.1\) OR 0.014 OR 7/500 or equivalent. Fractional answer: 21/250 or equivalent. (ISW) \\
\hline \begin{tabular}{l}
19.
\[
\begin{aligned}
\hline \text { Sight of } 25 x^{2}+ \& 15 x-15 x-9 \\
\& 25 x^{2}-19 x-9=0
\end{aligned}
\]
\[
x=\frac{-(-19) \pm \sqrt{(-19)^{2}-4 \times 25 \times(-9)}}{2 \times 25}
\]
\[
x=\frac{19 \pm \sqrt{1261}}{50}
\] \\
\(x=1.09\) with \(x=-0.33\) (answers to 2 dp)
\end{tabular} \& B1
B1

M1

A1

A1 \& | Or equivalent. |
| :--- |
| ' $=0$ ' required, but may be implied by an attempt to use the quadratic formula or if $a=25, b=-19$, $c=-9$ used in the quadratic formula. |
| This substitution into the formula must be seen for M1, otherwise award MOAOAO. |
| FT 'their derived quadratic equation' of equivalent difficulty (a, b and c must be non-zero). |
| Allow one slip in substitution for M1 only, but must be correct formula. |
| Can be implied from at least one correct value of x evaluated, provided M1 awarded. |
| CAO for their quadratic equation. |

\hline
\end{tabular}

