GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 1 - FOUNDATION TIER 3300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

Unit 1: Foundation Tier	Mark	Comments
1. (a) 2380	B1	
1. (b) 9615	B1	
1. (c) 67	B1	
1. (d) 378	B1	
1. (e) 1257	B1	
2. (a) unlikely	B1	
2. (b) an even chance	B1	
3.		
	B1	
4. (a) $(\mathrm{x}=) 54^{\circ}$	B1	Accept 52° to 56°
4. (b) Angle of 147° drawn at B	B1	Accept 145° to 149°
5.(a) 5 hours 45 minutes OR $53 / 4$ hours OR 345 mins	B1	Allow incorrect notation, e.g. 5:45 or 5.45
5.(b) 6 small triangles shaded	B1	
	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	May be seen in parts.
Accuracy of Writing Show all their working which must be in correct mathematical form Include units in the answer	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
7.(a) 3a	B1	
7.(b)(i) (y=) 63	B1	Accept embedded answer
7.(b)(ii) (x=) 12	B1	Accept embedded answer
7 (c) 6	B1	

11.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	A marked at 1 B marked at 0.6 (accept 0.55 to 0.65 exclusive) C marked at 0.2 (accept 0.15 to 0.25 exclusive)
12. (a) 72	B2	B1 for an appropriate sight of 9 or 8.
12. (b) -31	B1	
12. (c) 42 ISW	B1	Allow 42.0
13. Showing 30% 32% (31%), and OR $30 / 100$, $31 / 100$ and $32 / 100$ OR (0.3), 0.31 and 0.32 OR three correct calculations for a common amount. 0.3 31%, $8 / 25$	B2	B2 for all correct \%, OR all correct fractions with a common denominator, OR all correct decimals, OR correct work using a common amount, OR a valid combination that allows full comparison. B1 for one correct conversion or two correct calculations for a common amount. Allow any unambiguous indication (e.g. 'converted' values.) Strict FT of 'their work' if at least B1 gained. Correct answer, with no other marks awarded, gains final B1 only.
14. $360-90-220 \text { or }$ equivalent	M1	Answer line takes precedence. Note: $360-310$ or $270-220$ or $140-90$ Award M1 for complete method or intention of complete method provided not contradicted e.g. brackets missing 360-90 +220
$50\left({ }^{\circ}\right)$	A1 M1	May be seen in later working May be seen in stages FT (180 - 'their 50') $\div 2$
$\begin{aligned} & \quad(x=) \quad(180-50) \div 2 \text { or equivalent } \\ & 65\left({ }^{\circ}\right) \end{aligned}$	A1	
14. Alternative method	$\begin{aligned} & B 1 \\ & M 2 \\ & A 1 \end{aligned}$	Answer line takes precedence. $F T$ (their ' $220-90$ ') $\div 2$

15. (a) Any n, as a whole number, which results in $7 n-9$ being a multiple of 4	B2	Answer space takes precedence and must not be from incorrect working. Do not ignore crossed-out work for this question. Award B1 for any one of: - any 2 correctly evaluated terms in the sequence $7 n-$ 9 (i.e. not leading to, or not recognised as leading to, a multiple of 4 for their choice of n) or - setting up an equation $7 n-9=4 \times k$ (where $k \geq 1$ and a whole number) and attempt to solve - a correct value of n substituted in $7 n-9$, but contradiction or no answer given on answer line (e.g. $7 \times 3-9=12$ and 12 written on answer line or answer line left blank) Note: Award B0 for a correct value of n from incorrect working e.g. if $7 \times 4-9=19$, then $n=19$ on the answer line.
15. (b) Any n, as a whole number, which results in $3 n-5$ being a prime number	B2	Answer space takes precedence and must not be from incorrect working. Do not ignore crossed-out work for this question. Award B1 for any one of: - any 2 correctly evaluated terms in the sequence $3 n-$ 5 (i.e. not leading to, or not recognised as leading to, a prime number for their choice of n) or - setting up an equation $3 n-5=$ a prime number and attempt to solve - a correct value of n substituted in $3 n-5$, but contradiction or no answer given on answer line (e.g. $3 \times 4-5=7$ and 7 written on answer line or answer line left blank) - a correct value of n substituted in $3 n-5$, but n contradicted for their workings (but n still leads to a prime number) given on answer line (e.g. $3 \times 4-5=7$ and 12 written on answer line or answer line left blank). Note: Award B0 for a correct value of n from incorrect working e.g. if $3 \times 4-5=13$, then $n=13$ on the answer line.
16. (a) (P (green or yellow) $=) 0.7$ or equivalent $(\mathrm{P}($ yellow $)=$) 0.35 or equivalent ISW	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	FT 'their 0.7 ' $\div 2$, provided not 0.3 and less than 1 If no marks awarded, award SC1 for $P($ red $)+P($ green $)+P($ yellow $)=1$
16. (b) Any valid explanation e.g. "as there are 10 balls, the only possible probabilities are $0 \cdot 1,0 \cdot 2,0 \cdot 3$ etc" "(you can't have) 2.5 balls" "a quarter of 10 is not a whole number" " 0.25 of $10=2 \cdot 5$, you can't have half a ball" " 10 is not divisible by 4 "	E1	Accept "you can't have half a ball". Allow sight of 2.5 for E1. Do not accept incomplete explanations e.g. "we don't know how many blue (or white) balls there are".

17. $\begin{array}{cl} 8 x+3 x=17+38 & \text { OR }-17-38=-8 x \\ -3 x & \\ 11 x=55 & \text { OR } \\ x=5 \end{array} \quad-55=-11 x$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until $2^{\text {nd }}$ error. Mark final answer. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise, accept a fraction. Allow B1B1B1 for a correct embedded answer BUT only B1B1B0 if contradicted by $x \neq 5$
18. (Area of rectangle) $48=8 \times x$ (width of rectangle, $x=48 / 8=$) 6 (m) (Area of trapezium $=)(5+9) \times(6 \times 2)$ or equivalent 2 $=84\left(\mathrm{~m}^{2}\right)$	M1 A1 M1 A1	Lengths may be shown on the diagrams. Allow an embedded 6 e.g. $8 \times 6=48$ for M1A1. Sight of 12(m) implies the previous M1A1. FT 'their stated $x^{\prime} \times 2$. Allow M1 for correct intent seen. e.g. $5+9 \times 12 \div 2$
19. $7,7,10,12$ (in any order)	B3	Numbers shown in number boxes take precedence. The four conditions: - All numbers between 1 and 15 inclusive. - Unique mode $=7$. - Median $=8.5$. - Total $=36$. B2 for three conditions met. B1 for two conditions met. FOUR numbers must be shown, otherwise $B 0$. Award B1 only for $7,7,10,10$ OR 7, 7,11,11 (not a unique mode).

GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 2 - FOUNDATION TIER 3300U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

Unit 2 Foundation Tier	Mark	Comments
1.(a) 65011	B1	
1.(b) five million six thousand four hundred and three	B1	
$\text { 2. } \quad \begin{array}{ll} (>) \\ & < \\ & = \\ & < \end{array}$	B2	B1 for 2 correct.
3. (a)(i) Kite	B1	
3. (a)(ii) Parallelogram	B1	
3.(b) Sphere	B1	
4.(a) $48,96,144,192$	B1	Condone inclusion of 240 if 48 is omitted.
4.(b) 3	B1	
4.(c) 39	B1	
5.(a) 16 and 25	B2	Answer space takes precedence. Accept 4^{2} and 5^{2}. B1 for writing - two numbers with a difference of 9 , one of which is square, or - two different square numbers in their answer space, or - listing at least three square numbers in their workings. If no marks, award SC1 for an unsupported answer of 4 and 5 .
5.(b) No, AND correct reason stated e.g. - (two odd numbers) add to give an even number (and 37 is odd). - only an even and an odd number can add to make 37. - only an even and an odd number can add to make an odd number.	E1	EO if incorrect box is ticked, even if the correct reason is given. If none of the boxes are ticked, 'no' may be implied by their reason. Accept equivalent reasons. Accept the use of 'make' or 'and' instead of 'add'. Allow 'there are no two odd numbers which add to make 37 ' or 'the answer will always be even'. Exemplifying two odd numbers adding to an even number by itself is insufficient.
6.(a) circumference	B1	
6.(b) 270°	B1	
6.(c) (Smaller angle $=$) $75\left({ }^{\circ}\right)$ (Larger angle =) $105\left(^{\circ}\right.$)	B2	B1 for two angles which add to 180°, provided neither angle is 90° or 0°.
7.(a) Subtract fourteen (from the previous term)	B1	Accept 'take away fourteen', 'goes down in fourteens' and ' -14 '. BO for 14 alone or 'there is 14 between each number'.
7.(b) 736	B1	
7.(c) $\mathrm{n}-4$ (grapes)	B1	Mark final answer
8. 0.7 $70(\%)$ $\left(\frac{1}{20}\right)$ 0.05	B4	B1 for each correct response.
9. 9.65 ISW	B1	$\begin{aligned} & \text { Allow } \frac{193}{20} \text { or } 9 \frac{13}{20} \\ & \text { BO for } 193 \div 20 . \\ & \hline \end{aligned}$
10.303	B2	Mark final answer. B1 for sight of 245 or 58 (but not $245 x$ or $58 y$) OR B1 for an unsupported final answer of $303 x$, or similar.

$$
\begin{aligned}
& \text { 11. }\left(\text { Smallest number }=\frac{3}{5} \times 200=120\right) \\
& (\text { Largest number }=120+4=124)
\end{aligned}
$$

The three numbers are) 120, 122, 124
Award B2 for a final answer of three numbers which satisfies the following conditions:

- the three numbers are different
- the three numbers are even
- the range of the three numbers is 4
- the smallest number is greater than or equal to 40.

Award B1 for sight of 120 or a final answer of three different numbers with a range of 4.
Organisation and Co

For OC1, candidates will be expected to:

- present their response in a structured way
- explain to the reader what they are doing at each step of their response
- lay out their explanation and working in a way that is clear and logical
- write a conclusion that draws together their results and explains what their answer means

Accuracy of writing.
For W1, candidates will be expected to:

- show all their working
- make few, if any, errors in spelling, punctuation and grammar
- use correct mathematical form in their working
- use appropriate terminology, units, etc

B2 Award B1 for one of the following:
- if C clearly identified on grid but coordinates not given or are incorrect
- for an answer of $(4,3)$ (midpoint of $A B$)
- for an answer of ($1 x, 0 y$) and point not identified.

Award B2 for any point that satisfies the conditions e.g. (-1.5, 6.5)

Award B1 for one of the following:

- if D identified on grid in a correct position but coordinates not given or are incorrect OR
- for the coordinates of any point that creates a right-angled triangle with $A B$ as one side e.g.
$(0,5)(1,4)(2,3)$
$(4,1)(5,0)(6,-1)(7,-2)$ $(3,4)$
$(2,7)(3,6)(4,5)$
$(6,3) \quad(7,2)$

14. (d) Alternative Method 1 $\begin{array}{r} (\text { Expected number of winners }=7 / 12 \times 228) \\ 133 \text { (winners) } \end{array}$	B1	If $7 / 12$ or correct $\%$ or decimal seen in part (c), it must be used for this B1. FT 'their $7 / 12$ ' if less than 1×228 Allow 133/228 or ' 133 out of 228 ' Must be whole number Award BO for $7 / 12 \times 228=0.58(333 \ldots) \times 228=132 \text { winners } .$ Award BO for $7 / 12 \times 228=0.6 \times 228=136$ or 137 winners.
(Expected number that don't win $=228-133$) 95 (non-winners)	B1	FT 228 - 'their 133' (provided < 228)
$($ Amount taken $=95 \times £ 2.50=) \quad(£) 237.5(0)$	B1	FT £2.50 \times 'their 95' provided <133
(Expected profit $=95 \times £ 2.50-133 \times £ 1=$) (£) 104.5(0)	B1	$\begin{aligned} & (£) 237.5(0)-(£) 133 \\ & \text { FT 'their }(£) 237.5(0) \text { ' - 'their (£) } 133 \text { ' } \end{aligned}$
		Award B1B1B1B0 for sight of $95 \times £ 2.50-133 \times £ 1$ with an incorrect final answer. If the FT results in a loss, the 'Loss' must be stated, or the answer left as a negative.
14. (d) Alternative Method 2 Working with 12 players (Amount taken $=12 \times £ 2.50=$) (£)30(.00)	B1	
$($ Expected prize money $=7 \times £ 3.50=)(£) 24.5(0)$	B1	FT 'their 7' (provided < 12)
(Expected profit for 12 players = $\begin{equation*} (£) 30(.00)-(£) 24.5(0)=) \tag{£} \end{equation*}$	B1	FT 'their (£)30(.00)' - 'their (£)24.5(0)'
(Expected profit for 228 players $\begin{equation*} =\frac{228}{12} \times(£) 5.5(0)=1 \tag{£} \end{equation*}$	B1	$\text { FT } 19 \times \text { 'their (} £ \text {)5.5(0)' }$ If the FT results in a loss, the 'Loss' must be stated, or the answer left as a negative.

GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 1 - INTERMEDIATE TIER 3300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

Unit 1: Intermediate Tier	Mark	Comments
1. (a) 72	B2	B1 for an appropriate sight of 9 or 8 .
1. (b) -31	B1	
1. (c) 42 ISW	B1	Allow 42.0
2. Showing 30% (31%), and 32% OR $30 / 100,31 / 100$ and $32 / 100$ OR (0.3), 0.31 and 0.32 OR three correct calculations for a common amount. $0.331 \%, \quad 8 / 25$ in order	B2 B1	B2 for all correct \%, OR all correct fractions with a common denominator, OR all correct decimals, OR correct work using a common amount, OR a valid combination that allows full comparison. B1 for one correct conversion or two correct calculations for a common amount. Allow any unambiguous indication (e.g. 'converted' values.) Strict FT of 'their work' if at least B1 gained. Correct answer, with no other marks awarded, gains final B1 only.
3. $360-90-220$ or equivalent $=50\left({ }^{\circ}\right)$ $(x=) \quad(180-50) \div 2$ or equivalent $=65\left({ }^{\circ}\right)$	M1 A1 M1 A1	Answer line takes precedence. Note: $360-310$ or $270-220$ or $140-90$. Award M1 for complete method or intention of complete method provided not contradicted e.g. brackets missing $360-90+220$. May be seen in later working. May be seen in stages. FT (180 - 'their 50 ') $\div 2$
3. Alternative method (Exterior angle $=$ sum of the two opposite interior angles =) $\begin{array}{r} 220-90(=) 130\left({ }^{\circ}\right) \\ (x=) \quad 130 \div 2 \text { or equivalent } \\ =65\left(^{\circ}\right) \end{array}$	$\begin{aligned} & B 1 \\ & M 2 \\ & A 1 \end{aligned}$	Answer line takes precedence. $\text { FT (their ' } 220-90^{\prime} \text {) } \div 2$

4. $\begin{aligned} & \text { Imran = } 25 \text { (years old) } \\ & \text { Glyn }=16 \text { (years old) } \\ & \text { Sheila }=8 \text { (years old) } \end{aligned}$	B3	Values in the answer space take precedence. If answer spaces are left blank allow unambiguous indication of their answers. Note: Check for the required conditions being met and not the individual numbers. Required conditions (or equivalent) are: $\begin{aligned} & I+G+S=49 \\ & I=G+9 \\ & G=2 \times S \end{aligned}$ A condition must be met using non-negative ages, otherwise BO. B3 all three conditions correct. B2 for two conditions correct. B1 for one condition correct. If answer spaces are left blank, but 25,16 and 8 clearly indicated, but unlabelled and - in the correct order, award B3 - in any other order, award B2. Award B2 for 25, 16 and 8 in any order on the answer spaces.
5. (a) Any n, as a whole number, which results in $7 n-9$ being a multiple of 4	B2	Answer space takes precedence and must not be from incorrect working. Do not ignore crossed-out work for this question. Award B1 for any one of: - any 2 correctly evaluated terms in the sequence $7 n-9$ (i.e. not leading to, or not recognised as leading to, a multiple of 4 for their choice of n) or - setting up an equation $7 n-9=4 \times k$ (where $k \geq$ 1 and a whole number) and attempt to solve - a correct value of n substituted in $7 n-9$, but contradiction or no answer given on answer line (e.g. $7 \times 3-9=12$ and 12 written on answer line or answer line left blank).
		n 1 2 3 4 5 6 7 8 9 10 11 $\ldots . .$. $7 n-9$ -2 5 12 19 26 33 40 47 54 61 68 $\ldots . .$. Note: Award B0 for a correct value of n from incorrect working e.g. if $7 \times 4-9=19$, then $n=19$ on the answer line.

5. (b) Any n, as a whole number, which results in $3 n-5$ being a prime number	B2	Answer space takes precedence and must not be from incorrect working. Do not ignore crossed-out work for this question. Award B1 for any one of: - any 2 correctly evaluated terms in the sequence $3 n-5$ (i.e. not leading to, or not recognised as leading to, a prime number for their choice of n) or - setting up an equation $3 n-5=$ a prime number and attempt to solve - a correct value of n substituted in $3 n-5$, but contradiction or no answer given on answer line (e.g. $3 \times 4-5=7$ and 7 written on answer line or answer line left blank) - a correct value of n substituted in $3 n-5$, but n contradicted for their workings given on answer line (but n still leads to a prime number) (e.g. $3 \times 4-5=7$ and 12 written on answer line). Note: Award BO for a correct value of n from incorrect working e.g. if $3 \times 4-5=13$, then $n=13$ on the answer line.
6. (a) ($\mathrm{P}($ green or yellow) $=) 0.7$ or equivalent $(P($ yellow $)=$) 0.35 or equivalent ISW	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	FT 'their $0 \cdot 7^{\prime} \div 2$, provided not 0.3 and less than 1 . If no marks awarded, award SC1 for $P($ red $)+P($ green $)+P($ yellow $)=1$.
6. (b) Any valid explanation e.g. "as there are 10 balls, the only possible probabilities are $0 \cdot 1,0 \cdot 2,0 \cdot 3$ etc" "(you can't have) 2.5 balls" "a quarter of 10 is not a whole number" " $0 \cdot 25$ of $10=2 \cdot 5$, you can't have half a ball" " 10 is not divisible by 4 "	E1	Accept "you can't have half a ball". Allow sight of 2.5 for E1. Do not accept incomplete explanations e.g. "we don't know how many blue (or white) balls there are".

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
Mark final answer. \\
FT from \(4 y=k\). \\
If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. \\
Award B1B1 for a final answer of 4r2 only if a correct answer is seen. \\
Award B1B0 for unsupported 4 r 2. \\
Allow B1B1 for a correct embedded answer BUT only \\
B1B0 if contradicted by \(y \neq 4 \frac{1}{2}\).
\end{tabular} \\
\hline 7. (b)
\[
\begin{array}{clrl}
8 x+3 x \& =17+38 \& \text { OR } \& -17-38=-8 x-3 x \\
11 x=55 \& \text { OR } \& -55=-11 x \\
\& x=5 \&
\end{array}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT until \(2^{\text {nd }}\) error. \\
Mark final answer. \\
If FT leads to a whole number answer, it must be shown as a whole number. Otherwise, accept a fraction. \\
Allow B1B1B1 for a correct embedded answer BUT only B1B1B0 if contradicted by \(x \neq 5\)
\end{tabular} \\
\hline \begin{tabular}{l}
8. \\
(Area of rectangle) \(48=8 \times x\) \\
(width of rectangle, \(x=48 / 8=\)) \(6(\mathrm{~m})\) \\
(Area of trapezium \(=) \frac{(5+9) \times(6 \times 2)}{2}\) or equivalent
\[
=84\left(\mathrm{~m}^{2}\right)
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Lengths may be shown on the diagrams. \\
Allow an embedded 6 e.g. \(8 \times 6=48\) for M1A1. \\
Sight of \(12(\mathrm{~m})\) implies the previous M1A1. \\
FT 'their stated \(x\) ' \(\times 2\). \\
Allow M1 for correct intent seen. e.g. \(5+9 \times 12 \div 2\)
\end{tabular} \\
\hline \begin{tabular}{l}
Organisation and Communication. \\
Accuracy of writing.
\end{tabular} \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W 1 , candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

9. $7,7,10,12$ (in any order)	B3	Numbers shown in number boxes take precedence. The four conditions: - All numbers between 1 and 15 inclusive. - Unique mode $=7$. - \quad Median $=8.5$. - Total $=36$. B2 for three conditions met. B1 for two conditions met. FOUR numbers must be shown, otherwise $B 0$. Award B1 only for 7, 7,10,10 OR 7, 7,11,11 (not a unique mode).
$\begin{array}{r} \text { 10. } \quad \begin{array}{r} (\mathrm{BC}=) \quad 56(\mathrm{~km}) \div(3+4) \times 4 \text { or equivalent } \\ 32(\mathrm{~km}) \\ (\mathrm{BC}=) \quad 32(\mathrm{~km}) \div 8 \times 5 \text { or equivalent } \\ 20 \text { (miles) } \end{array} \end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 awarded for complete method. FT 'their derived 32 ' $\div 8 \times 5$. If a candidate works with $A B$ instead of $B C$, then treat as a misread -1 (from A mark). Example 1 $56(\mathrm{~km}) \div(3+4) \times 3=24(\mathrm{~km})$ M1A1 (-1) $24(\mathrm{~km}) \div 8 \times 5=15$ (miles) M1 A1 (Total $=3$ marks) Example 2 e.g. $56(\mathrm{~km}) \div(3+4) \times 3=16(\mathrm{~km})$ M1A0 $16(\mathrm{~km}) \div 8 \times 5=10$ (miles) M1 A1 (-1) (Total = 2 marks)
10. Alternative Method $\begin{gathered} (\mathrm{AC}=) \quad 56(\mathrm{~km}) \div 8 \times 5 \text { or equivalent } \\ 35 \text { (miles) } \\ (\mathrm{BC}=) \quad 35(\text { miles }) \div(3+4) \times 4 \text { or equivalent } \\ 20 \text { (miles) } \end{gathered}$	M1 A1 M1 A1	M1 awarded for complete method FT 'their derived 35 ' $\div(3+4) \times 4$ If a candidate works with $A B$ instead of $B C$, then treat as a misread -1 (from second A mark). $56(\mathrm{~km}) \div 8 \times 5=35 \text { (miles) M1 A1 }$ 35 (miles) $\div(3+4) \times 3=15$ (miles) M1A1 (-1) (Total = 3 marks)

11.(a) -4 -2	B2	B1 for each
11. (b) At least 5 correct plots and no incorrect plot. A smooth curve drawn through their plots.	P1 C1	FT 'their ($-1,-4$)' and 'their ($1,-2$)' Allow $\pm 1 / 2$ a small square'. FT 'their 7 plots' OR a curve through the 5 given points AND $(-1,-4)$ and $(1,-2)$. Allow the intention to pass through their plots (within 1 small square, either horizontally or vertically of the point).
11. (c) -2.6 AND 1.6	B1	Strict FT 'their curve' only if exactly two points of intersection with the x-axis. Answers must be written to one decimal place. Allow \pm 'up to but not including 1 small square'.

12. (0 pets angle $=$) $\quad 40\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right)$ $($ Year 5: 0 pets $=) \frac{40\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right)}{360} \times 36$ (Year 5: 0 pets =) 4 (Year 5: 1 pet =) 9 (Probability no more than 1 pet =) $\frac{27}{61}$ or equivalent ISW	B1 M1 A1 B1 B1 B2	Answers may be seen on diagrams. Or equivalent. FT 'their 40'. Answer must be whole number and from correct working (e.g. not from $360 \div 90$). An answer of 4 (may be seen as $4 / 36$) implies B1M1A1, provided not from incorrect working. May be seen as 9/36. FT 'their derived 4' + 'their derived 9' $+6+8$ (no more than 1 pet) B1 for a numerator of 27 in a fraction <1. FT 'their derived 4' + 'their derived 9 ' $+6+8$ accurately evaluated as a numerator in a fraction <1. B1 for a denominator of 61 in a fraction <1. Penalise incorrect notation-1. e.g. '27 in 61'. If no marks awarded, award SC1 for sight of a correct 61. Special cases: If only 1 pet considered from Year 5 AND Year 6, an answer of $\frac{17}{61}$ would gain B0 or B1 M0A0B1B2 FT 'their derived 9' +8 for B 0 or B1 M0A0B0B2 61 Last B1 for a numerator of 17 in a fraction <1. FT 'their derived 9 ' +8 accurately evaluated as a numerator in a fraction < 1 . Last B1 for a denominator of 61 in a fraction <1. Penalise incorrect notation-1. e.g. ' 17 in 61'. If only 0 pets considered from Year 5 AND Year 6, an answer of $\frac{10}{61}$ would gain B1M1A1B0B2 FT 'their derived 4' +6 for B1M1A0B0B2 61 Last B1 for a numerator of 10 in a fraction <1. FT 'their derived 4' +6 accurately evaluated as a numerator in a fraction < 1 . Last B1 for a denominator of 61 in a fraction <1. Penalise incorrect notation-1. e.g. ' 10 in 61'.

12. Alternative method 1		Answers may be seen on diagrams
$\left(0+1\right.$ pet angle $=130\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right.$	B1	
$($ Year 5: $0+1$ pet $=) \quad \frac{130\left({ }^{\circ}\right) \pm 2\left(^{\circ}\right)}{360} \times 36$	M1	Or equivalent FT 'their 130'
$($ Year 5: $0+1$ pet $=) 13$	A2	May be seen as 13/36 Award A1 for an answer not rounded.
(Probability no more than 1 pet =)	B2	$F T$ ('their derived 13' $+6+8$).
$\frac{27}{61}$		$\frac{61}{\text { B1 for a numerator of } 27 \text { in a fraction < } 1 .}$
		B1 for a numerator of 27 in a fraction <1. FT 'their derived 13 ' $+6+8$ accurately evaluated as a numerator in a fraction < 1 .
		B1 for a denominator of 61 in a fraction < 1 .
		Penalise incorrect notation -1. e.g. '27 in 61'.
		If no marks awarded for the whole question, award SC1 for sight of a correct 61 .

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
12. Alternative method 2 \\
(Each child is represented by \(\frac{360(\%)}{36}=\)) \(\quad 10\left({ }^{\circ}\right)\) \\
(Year 5: 0 pets angle \(=40\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right)\) \\
\(\left(\right.\) Year 5: 0 pets \(\left.=\frac{40(0) \pm 2\left({ }^{\circ}\right)}{10\left({ }^{\circ}\right)}=\right) \quad 4\) \\
(Year 5: 1 pet =) 9 \\
(Probability no more than 1 pet =)
\[
\frac{27}{61} \text { or equivalent ISW }
\]
\end{tabular} \& B1
B1
B1

$B 1$

$B 2$ \& | Answers may be seen on diagrams |
| :--- |
| FT 'their 40' |
| Answer must be whole number and from correct working (e.g. not from $360 \div 90$) |
| An answer of 4 (may be seen as $4 / 36$) implies B1B1B1, provided not from incorrect working. |
| May be seen as 9/36 |
| $F T \frac{\text { ('their derived 4' }+ \text { 'their derived } 9 '+6+8 \text {) }}{61}$ |
| B1 for a numerator of 27 in a fraction <1. |
| FT 'their derived 4' + 'their derived 9 ' $+6+8$ |
| accurately evaluated as a numerator in a fraction < 1 |
| B1 for a denominator of 61 in a fraction < 1 . |
| Penalise incorrect notation-1. e.g. '27 in 61'. |
| If no marks awarded, award SC1 for sight of a correct 61. |
| Special cases: |
| If only 1 pet considered from Year 5 AND Year 6, an answer of $\frac{17}{61}$ would gain B0 or B1 BOBOB1B2 |
| FT 'their derived 9 '+8 for $B 1$ or B1 BOBOBOB2 |
| Last B1 for a numerator of 17 in a fraction < 1 . |
| FT 'their derived 9 ' +8 accurately evaluated as a numerator in a fraction <1. |
| Last B1 for a denominator of 61 in a fraction <1. |
| Penalise incorrect notation -1. e.g. '17 in 61'. |
| If only 0 pets considered from Year 5 AND Year 6, |
| an answer of $\frac{10}{61}$ would gain B1B1B1B0B2 |
| FT 'their derived 4' +6 for B1B1B0B0B2 |
| 61 |
| Last B1 for a numerator of 10 in a fraction < 1 . |
| FT 'their derived 4' +6 accurately evaluated as a numerator in a fraction <1. |
| Last B1 for a denominator of 61 in a fraction <1. |

\hline
\end{tabular}

13. $-6 n+21$ or equivalent	B2	B1 for sight of $-6 n$. If no marks, award SC1 for $6 n+21$.
14. (a) 0.4 shown on ' A does not occur' branch Use of $0.6 \times \ldots \ldots \ldots \ldots=0.48$ $P(B \text { occurs })=0.8$ Second set of branches $0.8,0 \cdot 2,0 \cdot 8,0 \cdot 2$	B1 M1 A1 A1	Allow M1A1 if 0.8 seen on one of the 'B occurs' branches. FT 'their $0 \cdot 8$ ' only if M1 awarded. ($0.48,0.52,0.48,0.52$ is MOAOAO)
14. (b) 0.4×0.2 $=0.08 \text { ISW }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their $0 \cdot 4^{\prime} \times$ 'their $0 \cdot 2$ ' provided both between 0 and 1.
$\begin{aligned} \text { 15. (a) }(C E=) 8 \times \frac{15}{10} \text { or } 8 \div \frac{10}{15} & \\ & =12(\mathrm{~cm}) \end{aligned}$	M1 A1	Or equivalent M1 for correct use of linear ratio.
15.(b) $(A B=) 10.5 \times \frac{10}{15}$ or $10.5 \div \frac{15}{10}$ or equivalent $=7(\mathrm{~cm})$	M1 A1	Or equivalent M1 for correct use of linear ratio. FT 'their scale factor' from (a) provided not 1.
16. Method to eliminate one variable e.g. 'equal coefficients AND appropriate intention to add or subtract' or use a method of substitution First variable found $x=4$ or $y=7$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found.	M1 A1 m1 A1	Allow one error in one term (not the term with equal coefficients). CAO. Award A0 for an answer that leads to a whole number, but not expressed as a whole number (e.g. $y=161 / 23$ or $x=92 / 23$) FT substitution of their ' 1 st variable' if M1 gained. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. If no marks gained, allow SC1 for both answers of $x=4$ AND $y=7$.
17. (a) $7.2 \times 10^{6} \mathrm{~cm}^{3}$	B1	
17. (b) 6	B1	
18.0 .2	B2	If B2 not awarded, award B1 for one of the following: - sight of 150000 or - sight of 3×10^{4} or - 2×10^{-1} or - $\frac{1}{5}$ or $\frac{3}{15}$ (or equivalent fraction)

GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 2 - INTERMEDIATE TIER 3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4. (d) Alternative Method 1 \\
(Expected number of winners \(=7 / 12 \times 228\)) \(133(\) winners \()\) \\
(Expected number that don't win \(=228-133\)) 95 (non-winners) \\
(Amount taken \(=95 \times £ 2.50=\)) \\
(£)237.5(0) \\
(Expected profit \(=95 \times £ 2.50-133 \times £ 1=\)) \\
(£)104.5(0)
\end{tabular} \& \(B 1\)

$B 1$
$B 1$
$B 1$

$B 1$ \& | If 7/12 or correct \% or decimal seen in part (c), it must be used for this B1. |
| :--- |
| FT 'their 7/12' if less than 1×228. |
| Allow 133/228 or ' 133 out of 228'. |
| Must be whole number. |
| Award BO for $7 / 12 \times 228=0 \cdot 58(333 \ldots) \times 228=132 \text { winners. }$ |
| Award B0 for |
| $7 / 12 \times 228=0.6 \times 228=136$ or 137 winners. |
| FT 228 - 'their 133' (provided < 228). |
| FT £2.50 x 'their 95' provided <133. |
| (£)237.5(0) - (£) 133 |
| FT 'their (£)237.5(0)' - 'their (£)133'. |
| Award B1B1B1B0 for sight of $95 \times £ 2.50-133 \times £ 1$ with an incorrect final answer. |
| If the FT results in a loss, the 'Loss' must be stated, or the answer left as a negative. |

\hline | 4. (d) Alternative Method 2 |
| :--- |
| Working with 12 players |
| (Amount taken $=12 \times £ 2.50=$) |
| (£)30(.00) |
| (Expected prize money $=7 \times £ 3.50=$) |
| (£)24.5(0) |
| (Expected profit for 12 players = $(£) 30(.00)-(£) 24.5(0)=)$ |
| (£)5.5(0) |
| (Expected profit for 228 players $=\frac{228}{12} \times(\mathfrak{£}) 5.5(0)=1$ |
| (£) 104.5(0) | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 | \& | FT 'their 7' (provided < 12). |
| :--- |
| FT 'their (£)30(.00)' - 'their (£)24.5(0)'. |
| FT $19 \times$ 'their (£)5.5(0)'. |
| If the FT results in a loss, the 'Loss' must be stated, or the answer left as a negative. |

\hline | Organisation and Communication. |
| :--- |
| Accuracy of writing. | \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

7. (a) $12 p-20$	B1	Must be an expression. Mark final answer.
7. (b) $\begin{aligned} 8 m & =w+3 & \text { or } & w+3 & =8 m & \text { or }-8 m \\ m & =\frac{w+3-3}{8} & \text { or } & \frac{w+3}{8} & =m & \text { or } \end{aligned} \quad m=\frac{-w-3}{-8}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $-8 m=-(w+3)$. FT only from $\pm 8 m= \pm w \pm 3$, stated or implied. (note: $8 m=w+3$ or $-8 m=-w-3$ will have already gained the previous B 1). B 1 B 0 for $-m=\frac{-3-w}{8}$ or equivalent. Mark final answer. Note Allow B1B0 for $m=(w+3) \div 8$ with or without brackets. Allow B1B0 for $\frac{w+3}{8}$ (' $m=$ ' missing).
7. (c) $y^{2}+y-20$ ISW	B2	Allow $y^{2}+1 y-20$. Award B 1 for one of the following: - $y^{2}+5 y-4 y-20$ - $y^{2}+5 y-4 y+-20$ - $y^{2}+5 y+-4 y-20$ - $y^{2}+5 y+-4 y+-20$ - $y^{2}+k y-20$ (where $k \neq 0$ or 1) - $y^{2}+(1) y+t$ (where $\left.t \neq-20\right)$ - for sight of y^{2} AND $+5 y$ AND $-4 y$ AND - 20 but not in an expression.
8. corresponding angles	B1	
9. Use of 129.5 / time $129 \cdot 5 \div 3 \cdot 5$ or equivalent 37 (miles per hour)	M1 M1 A1	Allow M1 even for e.g. $129 \cdot 5 / 3$ hours 30 mins or $129 \cdot 5 / 3 \cdot 3(0)$ or $129 \cdot 5 / 210$. Must be a complete and correct method e.g. $129 \cdot 5 / 210 \times 60$. CAO. Award M1M0AO for sight of unsupported $0 \cdot 61(6666 \ldots .$.$) (use of 129 \cdot 5 / 210$) OR 39•24(2424...) (use of 129.5/3.3).

10. (Diameter =) $24.8 \div 2 \times 3$ OR
(Radius =) $24.8 \div 2 \times 3 \div 2$ or equivalent
(Diameter =) $37.2(\mathrm{~cm})$ OR (Radius =) $18.6(\mathrm{~cm})$

$$
\pi \times\left(\frac{37.2}{2}\right)^{2} \times 24.8 \text { or } \pi \times 18.6^{2} \times 24.8
$$

$$
=27000\left(\mathrm{~cm}^{3}\right)
$$

A1 Sight of 1086 to $1087\left(\mathrm{~cm}^{2}\right)$ (base area calculated with radius 18.6) OR 4345 to $4348\left(\mathrm{~cm}^{2}\right)$ (base area calculated with diameter) implies first M1 A1.
If diameter AND radius given and radius $\neq 18.6$ either:

- \quad award M1A0 (for sight of diameter $=37 \cdot 2$) if their stated radius is then used to find the volume of the cylinder ($2^{\text {nd }} \mathrm{M}$ mark is awarded) or
- award M1A1 (for sight of diameter $=37 \cdot 2$) if their incorrect radius is not used to find the volume of the cylinder ($2^{\text {nd }} \mathrm{M}$ mark is not awarded).

M1 May be seen in parts.
Accept $3.14 \times 18.6^{2} \times 24.8$ or equivalent.
FT 'their stated radius' OR 'their stated diameter', provided it is halved at the appropriate stage.

A2
For A2, must be correct to 2sf.

A1 for an answer between 26940 and $26960\left(\mathrm{~cm}^{3}\right)$ inclusive.

Note:
(Diameter $=$) $24.8 \div 5 \times 3$ OR
(Radius =) $24.8 \div 5 \times 3 \div 2$
(Diameter =) $14.88(\mathrm{~cm})$ OR

(Radius $=)$	$7.44(\mathrm{~cm})$	A 0
$\pi \times 7.44^{2} \times 24.8$	M 1	
$4300\left(\mathrm{~cm}^{3}\right)$	A 2	

A1 for answer between 4310 and $4314\left(\mathrm{~cm}^{3}\right)$ inclusive
If M0 (2 ${ }^{\text {nd }} \mathrm{M}$ mark) then award SC1 for an answer of either:

- $\quad 110000\left(\mathrm{~cm}^{3}\right)$ (from use of $\pi \times 37 \cdot 2^{2} \times 24 \cdot 8$ rounded correctly) OR
- $\quad 17000\left(\mathrm{~cm}^{3}\right)$ (from use of $\pi \times 14.88^{2} \times 24.8$ rounded correctly).
FT 'their stated diameter' correctly rounding to 2sf for this SC1.

\begin{tabular}{|c|c|c|}
\hline 11. $\left(B C^{2}=\right) 9 \cdot 6^{2}+12 \cdot 8^{2}$ or equivalent
$$
\begin{aligned}
& \left(B C^{2}=\right) 256 \text { or }(B C=) \sqrt{ } 256 \\
& (B C=) 16(\mathrm{~cm}) \\
& C D=2 \times 60 \div 16 \text { or equivalent } \\
& (C D=) 7.5(\mathrm{~cm})
\end{aligned}
$$ \& M1
A1
A1

M2

M \& | note: $\left(B C^{2}=\right) 92 \cdot 16+163 \cdot 84$ (ignore place values for M1) |
| :--- |
| Award M1 for the correct values substituted into the Cosine rule. |
| Allow ($B C=) \pm 16$ (cm). |
| FT from M1 for the correctly evaluated square root of 'their 256 ' provided their answer $>12 \cdot 8$. |
| FT 'their derived BC^{\prime} OR 'their stated 16' (not derived) provided 12.8 < 'their stated 16 ' $22 \cdot 4$. |
| Award M1 for $60=1 / 2 \times 16 \times C D$ or equivalent. |
| Allow M2A1 for a correct embedded answer BUT M2A0 if contradicted by CD $=7.5$ (cm). |

\hline | 11. Alternative method: |
| :--- |
| Correct use of 'two-step' method $\begin{gathered} (B C=) 16(\mathrm{~cm}) \\ C D=2 \times 60 \div 16 \text { or equivalent } \end{gathered}$ $(C D=) 7.5(\mathrm{~cm})$ | \& M2

A1
M2

A1 \& | A partial trigonometric method is MO. |
| :--- |
| FT 'their derived BC' OR 'their stated 16' (not derived) provided 12.8 < 'their stated 16 < 22.4 . |
| Award M1 for $60=1 / 2 \times 16 \times C D$ or equivalent. |
| Allow M2A1 for a correct embedded answer BUT M2AO if contradicted by $C D \neq 7.5$ (cm). |

\hline 12. (a) $2 x(4 x+3 y)$ \& B2 \& Award B1 for $2 x(4 x \pm \ldots \ldots .$.$) or 2 x(\ldots \ldots .+3 y)$ Award B1 for a partial factorisation. i.e. $2\left(4 x^{2}+3 x y\right)$ or $x(8 x+6 y)$. Mark final answer.

\hline 12. (b)(i) $\quad(x+8)(x+5) \quad$ ISW \& B2 \& B 1 for ($x \ldots 8)(x \ldots 5)$.

\hline | 12. (b)(ii) Any valid explanation |
| :--- |
| e.g. "you could expand the two brackets" "expanding is the opposite of factorising" "multiply the brackets together" "solve $(x+8)(x+5)=0$, and then substitute the value(s) of x into $x^{2}+13 x+40$. It should give 0 ." "replace x in the brackets and expression with the same value. You should get the same answer." | \& E1 \& | Allow |
| :--- |
| "the two numbers need to add to 13 , but multiply to make 40" |
| "Use FOIL (CAMO) to check" or other names explaining the method. |
| Allow method shown to expand brackets for example: |
| Do not accept |
| " $(x+8)(x+5)=x^{2}+13 x+40$ " without further working |
| "taking out the brackets" |
| "reverse the calculation" |

\hline
\end{tabular}

13. (a) $\begin{aligned} (x=) & 14.5 \times \sin 42 \\ & =9.7(02 \ldots) \end{aligned}$	M2 A1	Award M2 for $14.5 \times \cos 48$ or $\frac{14.5 \times \sin 42}{\sin 90}$ M1 for $\sin 42=\frac{x}{14.5}$ or $\cos 48=\frac{x}{14 \cdot 5}$ or $\frac{x}{\sin 42}=\frac{14 \cdot 5}{\sin 90}$ Allow 10 from correct working. Award M2 A0 for an unsupported answer of $-13 \cdot 2895 \ldots$ (radians) or $8.88715 \ldots$ (gradians).
13. (a) Alternative method: Correct use of 'two-step' method. $(x)=9 \cdot 7(02 \ldots)(\mathrm{cm})$	$\begin{aligned} & M 2 \\ & \text { A1 } \end{aligned}$	A partial trigonometric method is MO. Accept an answer that rounds to $9.7(\mathrm{~cm})$ Award M2 AO for an answer of -13.2895... (radians) or 8.88715.... (gradians).
13. (b) $(y=) \cos ^{-1} \frac{13 \cdot 5}{15 \cdot 8}$ Correct evaluation in the range 31.3 to 31.4	$\mathrm{M} 2$ A1	M1 for $\cos y=\frac{13.5}{15 \cdot 8}(=0.854 .$. Allow 31 from correct working. Allow correct angles given in radians ($0 \cdot 5463$..) or gradians (34-7812...) Note: $\cos y=0.85 y=31.788 \ldots$ is awarded M2A0.
13. (b) Alternative method: Correct use of 'two-step' method. Correct evaluation in the range 31.3 to 31.4	$\begin{aligned} & M 2 \\ & \text { A1 } \end{aligned}$	A partial trigonometric method is MO. Allow 31 from correct working. Allow correct angles given in radians (0.5463 ..) or gradians (34-7812....)
$\begin{aligned} & \text { 14. (a) Any intention of } \\ & \text { length } \times \text { width } \times \text { height }=132 \\ & \text { e.g. } \quad 5 x\left(x^{2}+3\right)=132 \\ & \\ & 5 \times x \times\left(x^{2}+3\right)=132 \text { or } \\ & \\ & 5 x \times\left(x^{2}+3\right)=132 \text { or equivalent } \end{aligned}$	B1	Must be = 132 . May be seen in parts. Do not allow missing brackets e.g. $5 \times x \times x^{2}+3=132$.
14. (b)(i) One correct evaluation $2 \leq x \leq 3$ 2 correct evaluations $2.55 \leq x \leq 2 \cdot 75$, (one value <132, one value >132) 2 correct evaluations $2.55 \leq x \leq 2 \cdot 65$, (one value <132, one value >132) $x=2 \cdot 6$	B1 B1 M1 A1	Correct evaluation regarded as enough to identify if <132 or >132. If evaluations not seen accept 'too high' or 'too low'. Look out for testing $5 x^{3}+15 x-132=0$ or $x^{3}+3 x=26 \cdot 4$ or equivalent
14. (b)(ii) An answer in the range 9.76 to 10.16 (cm)	B1	Answer may be shown on the diagram. FT 'their $2 \cdot 6^{\prime 2}+3$. FT $132 \div(5 \times$ 'their x).

GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 1 - HIGHER TIER 3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

Unit 1: Higher Tier	Mark	Comments
1. $\quad(B C=) 56(\mathrm{~km}) \div(3+4) \times 4$ or equivalent $\begin{array}{r} 32(\mathrm{~km}) \\ (\mathrm{BC}=) \quad 32(\mathrm{~km}) \div 8 \times 5 \text { or equivalent } \\ 20 \text { (miles) } \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 awarded for complete method. FT 'their derived 32 ' $\div 8 \times 5$. If a candidate works with $A B$ instead of $B C$, then treat as a misread - 1 (from A mark). Example 1 $56(\mathrm{~km}) \div(3+4) \times 3=24(\mathrm{~km})$ M1A1 (-1) $24(\mathrm{~km}) \div 8 \times 5=15$ (miles) M1 A1 (Total $=3$ marks) Example 2 e.g. $56(\mathrm{~km}) \div(3+4) \times 3=16(\mathrm{~km})$ M1A0 $16(\mathrm{~km}) \div 8 \times 5=10$ (miles) M1 A1 (-1) (Total = 2 marks)
$\begin{aligned} & \text { 1. Alternative Method } \\ & \begin{array}{l} (\mathrm{AC}=) \quad 56(\mathrm{~km}) \div 8 \times 5 \text { or equivalent } \\ 35 \text { (miles) } \\ (\mathrm{BC}=) \quad 35 \text { (miles) } \div(3+4) \times 4 \text { or equivalent } \\ 20 \text { (miles) } \end{array} \end{aligned}$	M1 A1 M1 A1	M1 awarded for complete method FT 'their derived 35 ' $\div(3+4) \times 4$ If a candidate works with $A B$ instead of $B C$, then treat as a misread -1 (from second A mark). $\begin{aligned} & 56(\mathrm{~km}) \div 8 \times 5=35 \text { (miles) M1 A1 } \\ & 35(\text { miles }) \div(3+4) \times 3=15 \text { (miles) M1A1 }(-1) \\ & \quad(\text { Total }=3 \text { marks }) \end{aligned}$
Organisation and Communication.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Accuracy of writing.	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc

2. (a) -4	B2	B1 for each
2. (b) At least 5 correct plots and no incorrect plot. A smooth curve drawn through their plots.	P1 C1	FT 'their ($-1,-4$)' and 'their ($1,-2$)' Allow $\pm \times 1 / 2$ a small square’. FT 'their 7 plots' OR a curve through the 5 given points AND $(-1,-4)$ and $(1,-2)$. Allow the intention to pass through their plots (within 1 small square, either horizontally or vertically of the point).
2.(c) -2.6 AND 1.6	B1	Strict FT 'their curve' only if exactly two points of intersection with the x-axis. Answers must be written to one decimal place. Allow \pm 'up to but not including 1 small square'.

3. (0 pets angle $=$) $\quad 40\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right)$ $($ Year 5: 0 pets $=) \frac{40\left({ }^{\circ}\right) \pm 2\left(^{\circ}\right)}{360} \times 36$ (Year 5: 0 pets =) 4 $($ Year 5: 1 pet $=) 9$ (Probability no more than 1 pet =) $\frac{27}{61}$ or equivalent ISW	B1 M1 A1 B1 B2 B2	Answers may be seen on diagrams Or equivalent FT 'their 40' Answer must be whole number and from correct working (e.g. not from $360 \div 90$) An answer of 4 (may be seen as $4 / 36$) implies B1M1A1, provided not from incorrect working. May be seen as $9 / 36$ FT 'their derived 4' + 'their derived 9' $+6+8$ (no more than 1 pet) B1 for a numerator of 27 in a fraction <1. FT 'their derived 4' + 'their derived 9 ' $+6+8$ accurately evaluated as a numerator in a fraction <1. B1 for a denominator of 61 in a fraction < 1 . Penalise incorrect notation-1. e.g. '27 in 61'. If no marks awarded, award SC1 for sight of a correct 61. Special cases: If only 1 pet considered from Year 5 AND Year 6, an answer of $\frac{17}{61}$ would gain B0 or B1 M0A0B1B2 FT 'their derived 9 ' +8 for BO or B 1 M0A0B0B2 61 Last B1 for a numerator of 17 in a fraction < 1 . FT 'their derived 9 ' +8 accurately evaluated as a numerator in a fraction < 1 . Last B1 for a denominator of 61 in a fraction <1. Penalise incorrect notation-1. e.g. '17 in 61'. If only 0 pets considered from Year 5 AND Year 6, an answer of $\frac{10}{61}$ would gain B1M1A1B0B2 FT 'their derived 4' +6 for B1M1A0B0B2 61 Last B1 for a numerator of 10 in a fraction < 1 . FT 'their derived 4' +6 accurately evaluated as a numerator in a fraction < 1 . Last B1 for a denominator of 61 in a fraction <1. Penalise incorrect notation-1. e.g. '10 in 61'.

3. Alternative method 1		Answers may be seen on diagrams
$(0+1$ pet angle $=) 130\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right)$	B1	
$(\text { Year 5: } 0+1 \text { pet }=) \quad \frac{130\left({ }^{\circ}\right) \pm 2\left({ }^{\circ}\right)}{360} \times 36$	M1	Or equivalent FT 'their 130'
(Year 5: $0+1$ pet =) 13	A2	May be seen as 13/36 Award A1 for an answer not rounded.
$\frac{27}{61}$ or equivalent		61
		B1 for a numerator of 27 in a fraction <1. FT 'their derived 13' $+6+8$ accurately evaluated as a numerator in a fraction <1.
		B1 for a denominator of 61 in a fraction < 1 . Penalise incorrect notation -1. e.g. '27 in 61'.
		If no marks awarded for the whole question, award SC1 for sight of a correct 61 .

3. Alternative method 2
(Each child is represented by $\underline{360\left({ }^{\circ}\right)}=$) $10\left({ }^{\circ}\right)$
$\left(\right.$ Year 5: 0 pets angle $=40\left({ }^{\circ}\right) \pm 2\left(^{\circ}\right)$

$$
\left(\text { Year 5: } 0 \text { pets }=\frac{40\left({ }^{\circ}\right) \pm 2\left(0^{\circ}\right)}{10\left(^{\circ}\right)}=\right) \quad 4
$$

$($ Year 5: 1 pet = $) 9$
(Probability no more than 1 pet =)
$\frac{27}{61}$ or equivalent ISW

Answers may be seen on diagrams

FT 'their 40'
Answer must be whole number and from correct working (e.g. not from $360 \div 90$)
An answer of 4 (may be seen as $4 / 36$) implies
B1B1B1, provided not from incorrect working.
$F T$ ('their derived 4' + 'their derived 9' $+6+8$)
B1 for a numerator of 27 in a fraction <1.
FT 'their derived 4' + 'their derived 9' $+6+8$
accurately evaluated as a numerator in a fraction <1
B1 for a denominator of 61 in a fraction < 1.
Penalise incorrect notation -1. e.g. ' 27 in 61'.
If no marks awarded, award SC1 for sight of a correct 61.

Special cases:
If only 1 pet considered from Year 5 AND Year 6, an answer of $\frac{17}{61}$ would gain B0 or B1 MOAOB1B2
$F T \frac{\text { 'their derived } 9 \text { ' }+8}{61}$ for $B 0$ or B1 MOAOBOB2
Last B1 for a numerator of 17 in a fraction <1.
FT 'their derived 9' +8 accurately evaluated as a numerator in a fraction < 1 .
Last B1 for a denominator of 61 in a fraction < 1 .
Penalise incorrect notation -1. e.g. '17 in 61'.
If only 0 pets considered from Year 5 AND Year 6,
an answer of $\frac{10}{61}$ would gain B1M1A1B0B2
61
FT 'their derived 4' +6 for B1M1A0B0B2
61
Last B1 for a numerator of 10 in a fraction < 1 .
FT 'their derived 4' +6 accurately evaluated as a numerator in a fraction <1.
Last B1 for a denominator of 61 in a fraction < 1 .
Penalise incorrect notation -1. e.g. '10 in 61'.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4. (a) 0.4 shown on ' \(A\) does not occur' branch Use of \(0.6 \times \ldots \ldots \ldots \ldots=0.48\) \(P(B\) occurs \()=0.8\) \\
Second set of branches \(0.8,0.2,0.8,0.2\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Allow M1A1 if 0.8 seen on one of the ' \(B\) occurs' branches. \\
FT 'their 0.8 ' only if M1 awarded. \\
(\(0.48,0.52,0.48,0.52\) is MOAOAO)
\end{tabular} \\
\hline 4. (b) \(0.4 \times 0.2\)
\[
=0.08 \mathrm{ISW}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& FT 'their \(0 \cdot 4\) ' \(\times\) 'their \(0 \cdot 2^{\prime}\) provided both between 0 and 1. \\
\hline \[
\text { 5. (a) } \begin{aligned}
(C E=) 8 \times \frac{15}{10} \text { or } 8 \div \frac{10}{15} \& \\
\& =12(\mathrm{~cm})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& Or equivalent M1 for correct use of linear ratio. \\
\hline \begin{tabular}{l}
5.(b) \\
\((A B=) 10.5 \times \frac{10}{15}\) or \(10.5 \div \frac{15}{10}\) or equivalent
\[
=7(\mathrm{~cm})
\]
\end{tabular} \& M1
A1 \& \begin{tabular}{l}
Or equivalent M1 for correct use of linear ratio. \\
FT 'their scale factor' from (a) provided not 1.
\end{tabular} \\
\hline \begin{tabular}{l}
6. \\
Method to eliminate one variable e.g. 'equal coefficients AND appropriate intention to add or subtract' or use a method of substitution First variable found \(x=4\) or \(y=7\). \\
Substitute to find the \(2^{\text {nd }}\) variable. Second variable found.
\end{tabular} \& M1
A1

m1

A1 \& | Allow one error in one term (not the term with equal coefficients). |
| :--- |
| CAO. |
| Award AO for an answer that leads to a whole number, but not expressed as a whole number (e.g. $y=161 / 23$ or $x=92 / 23$) |
| FT substitution of their ' 1 st variable' if M1 gained. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. |
| If no marks gained, allow SC1 for both answers of $x=4$ AND $y=7$. |

\hline 7. (a) $7.2 \times 10^{6} \mathrm{~cm}^{3}$ \& B1 \&

\hline 7. (b) 6 \& B1 \&

\hline 8.0 .2 \& B2 \& | If B2 not awarded, award B1 for one of the following: |
| :--- |
| - sight of 150000 or |
| - sight of 3×10^{4} or |
| - 2×10^{-1} or |
| - $\frac{1}{5}$ or $\frac{3}{15}$ (or equivalent fraction) |

\hline
\end{tabular}

9.(a)	C1	Clear intention to draw a curve. Curve must pass through (0,0), $(180,0)$ and $(360,0)$. AND intention to have maximum at $(90,1)$ and minimum at (270,-1). Ignore curve shown for values $\mathrm{x}<0^{\circ}$ or $\mathrm{x}>360^{\circ}$.
9.(b)	C1	Clear intention to draw a curve with positive gradient. Curve must pass through (0,0), $(180,0)$ and $(360,0)$. AND have inflection point at $(180,0)$. There must be an intention not to cross the asymptotes at $\mathrm{x}=90^{\circ}, \mathrm{x}=270^{\circ}$. Ignore curve shown for values $x<0^{\circ}$ or $x>360^{\circ}$.
10. $\begin{array}{lll} 5 x+y x=t-4 & \text { or } & 4-t=-y x-5 x \\ x(5+y)=t-4 & \text { or } & 4-t=x(-y-5) \\ x=\frac{t-4}{5+y} & \text { or equivalent } \end{array}$	B1 B1 B1	FT until $2^{\text {nd }}$ error provided equivalent difficulty (requiring factorisation). Collecting x terms. Factorising. Allow B1 for $4-t=-x(y+5)$. Dividing. Allow $x=\frac{4-t}{-y-5}$ Mark final answer.
$\begin{aligned} & \text { 11. } W \frac{\alpha \frac{1}{f}}{} \text { OR } W=\frac{k}{f} \\ & 0.5=\frac{k}{1200} \text { OR } k=600 \\ & W=\frac{600}{f} \text { or } 10=\frac{600}{f} \text { or equivalent } \\ & \text { (f }=60 \end{aligned}$ [The frequency is $60(\mathrm{~Hz})$]	B1 M1 A1 B1	Allow W $\underset{f}{\mathrm{k}}$ M1 implies B1. F.T. for use of $W \alpha_{\frac{1}{f} n}$ with $n>0$. May be implied by further work. FT for 'their k' provided M1 awarded.
Alternative method $1200 \div 2 \div 10$ or $1200 \div 20$ or equivalent	M3	A complete method (based on multiplying and dividing) M1 for $W=1$ when $f=600 \mathrm{~Hz}$ OR $W=2$ when $f=300$ OR $W=5$ when $f=120$, i.e. where $W f=600$ provided W >0.5 (i.e. $f<1200$)
$(f=) 60$ [The frequency is $60(\mathrm{~Hz})$]	A1	No marks for $1200 \times 20=24000 \mathrm{~Hz}$ (using direct proportion)

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
15. \\
10 \\
\(16-6 \sqrt{7}\) \\
26-6 \(\sqrt{ } 7\) AND irrational indicated.
\end{tabular} \& B2 \& \begin{tabular}{l}
B1 for \\
- (numerator of) \(20 \sqrt{ } 2\) or \(10 \times 2 \times \sqrt{ } 2\) or \\
- (denominator of) \(2 \sqrt{ } 2\) or \(\sqrt{ } 8\) or \\
- appropriate factorisation of both numerator and denominator
\[
\text { e.g. } \frac{\sqrt{ } 2 \times \sqrt{ } 2 \times \sqrt{ } 2 \times \sqrt{ } 100}{\sqrt{ } 2 \times \sqrt{ } 2 \times \sqrt{ } 2}(\text { or } \sqrt{ } 100)
\] \\
B1 for 3 or 4 correct terms within \\
\(9-3 \sqrt{7}-3 \sqrt{ } 7+7\) (e.g. \(B 0\) for ' 2 ', from 2 sign errors) \\
\(+\sqrt{49}\) might be seen instead of +7 . \\
\(-6 \sqrt{7}\) is equivalent to 'two correct terms'. \\
Mark final answer. \\
FT for equivalent difficulty (requiring collection of terms) provided either of B2s is awarded AND final answer is irrational AND requires no further simplification.
\end{tabular} \\
\hline 16. (a) \(y=-f(x)\) \& B1 \& Correct notation. Allow \(y=-f x\) \\
\hline 16. (b) \(\quad y=f(x-4)\) \& B1 \& Must be unambiguous e.g. not missing brackets. \\
\hline 17. (a) \(\frac{5}{10} \times \frac{4}{9} \times \frac{1}{8}\) or equivalent \(\frac{20}{720}\left(=\frac{1}{36}\right) \quad\) or equivalent \& M1
A1 \& Accept e.g. \(\frac{5 \times 4 \times 1}{10 \times 9 \times 8}\) ISW \\
\hline \[
\text { 17.(b) } \begin{aligned}
\& 1-\mathrm{P} \text { (no blue) } \\
= \& 1-\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \\
= \& \frac{660}{720}\left(=\frac{11}{12}\right) \text { or equivalent }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { S1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
May be implied by subsequent working. Complete method. \\
ISW \\
FT from part (a) consistent use of a wrongly calculated denominator. \\
If no other marks awarded, SC1 for sight of \(\frac{875}{1000}\) or \(\frac{940}{1000}\) or equivalent.
\end{tabular} \\
\hline \begin{tabular}{l}
17.(b) Alternative method \#1 \\
1 - P(three red) - P(two red, one green)
\[
\begin{aligned}
\& =1-\frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}-\frac{4}{10} \times \frac{3}{9} \times \frac{1}{8} \times 3 \\
\& \left(=1-\frac{24}{720}-\frac{36}{720} \text { or } 1-\frac{1}{30}-\frac{1}{20}\right) \\
\& =\frac{660}{720}\left(=\frac{11}{12}\right) \text { or equivalent }
\end{aligned}
\]
\end{tabular} \& S1
M1

A1 \& | May be implied by subsequent working. |
| :--- |
| Complete method. (Missing x3 is S1 M0 AO.) |
| ISW |
| FT from part (a) consistent use of a wrongly calculated denominator. |
| If no other marks awarded, |
| SC1 for sight of $\frac{888}{1000}$ or $\frac{940}{1000}$ or equivalent. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
17.(b) Alternative method \#2 \\
\(P\) (one blue, two not blue OR two blue, one not blue OR three blue)
\[
\begin{aligned}
\& =\frac{5}{10} \times \frac{5}{9} \times \frac{4}{8} \times 3+\frac{5}{10} \times \frac{4}{9} \times \frac{5}{8} \times 3+\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \\
\& =\frac{660}{720}\left(=\frac{11}{12}\right) \text { or equivalent }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
S1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
May be implied by subsequent working. \\
Complete method. (Missing x3 is S1 MO AO.) \\
ISW \\
FT from part (a) consistent use of a wrongly calculated denominator. \\
If no other marks awarded, \\
SC1 for sight of \(\frac{875}{1000}\) or \(\frac{660}{1000}\) or equivalent.
\end{tabular} \\
\hline \begin{tabular}{l}
17. (b) Alternative method \#3 \\
\(P\) (two red, one blue OR one red, one green, one blue OR two blue, one red OR two blue, one green OR three blue)
\[
\begin{aligned}
\& =\frac{4}{10} \times \frac{3}{9} \times \frac{5}{8} \times 3+\frac{4}{10} \times \frac{1}{9} \times \frac{5}{8} \times 6 \\
\& +\frac{5}{10} \times \frac{4}{9} \times \frac{4}{8} \times 3+\frac{5}{10} \times \frac{4}{9} \times \frac{1}{8} \times 3+\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \\
\& =\frac{660}{720}\left(=\frac{11}{12}\right) \text { or equivalent }
\end{aligned}
\]
\end{tabular} \& S1
M1

A1 \& | May be implied by subsequent working. |
| :--- |
| Complete method. |
| (Missing x3 and / or x6 is S1 MO AO.) |
| ISW |
| FT from part (a) consistent use of a wrongly calculated denominator. |
| If no other marks awarded, |
| SC1 for sight of $\frac{860}{1000}$ or $\frac{660}{1000}$ or equivalent. |

\hline 18. $\begin{array}{ll}\text { (Numerator) } & 3(2 x-5) \\ \text { (Denominator) } & (2 x+5)(2 x-5)\end{array}$

$$
\frac{3}{2 x+5}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B2 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | B1 for (2x5) (2x 5) |
| :--- |
| FT from one error, provided equivalent difficulty. Mark final answer. |

\hline
\end{tabular}

GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 2 - HIGHER TIER 3300U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

Unit 2 Higher Tier	Mark	Comments
1. Correct rotation.	B2	B1 for either a: - 90° anticlockwise rotation about $(-1,1)$ - 90° clockwise rotation about (1,-1).
2. (a) $8 m=w+3$ or $w+3=8 m$ or $-8 m=-w-3$ $m=\frac{w+3}{8}$ or $\frac{w+3}{8}=m$ or $m=\frac{-w-3}{-8}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $-8 m=-(w+3)$. FT only from $\pm 8 m= \pm w \pm 3$, stated or implied. (note: $8 m=w+3$ or $-8 m=-w-3$ will have already gained the previous B 1). B1B0 for $-m=\frac{-3-w}{8}$ or equivalent. Mark final answer. Note Allow B1B0 for $m=(w+3) \div 8$ with or without brackets. Allow B1B0 for $\frac{w+3}{8}$ (' $m=$ ' missing).

2. (b)	$y^{2}+y-20$ ISW	B2	Allow $y^{2}+1 y-20$. Award B1 for one of the following: - $y^{2}+5 y-4 y-20$ - $y^{2}+5 y-4 y+-20$ - $y^{2}+5 y+-4 y-20$ - $y^{2}+5 y+-4 y+-20$ - $y^{2}+k y-20$ (where $k \neq 0$ or 1$)$ - $y^{2}+(1) y+t$ (where $\left.t \neq-20\right)$ - for sight of y^{2} AND +5y AND - $4 y$ AND -20 but not in an expression.

3. (Diameter =) $24.8 \div 2 \times 3$ OR
(Radius $=$) $24.8 \div 2 \times 3 \div 2$ or equivalent
(Diameter =) $37 \cdot 2(\mathrm{~cm})$ OR (Radius =) $18 \cdot 6(\mathrm{~cm})$

$$
\pi \times\left(\frac{37.2}{2}\right)^{2} \times 24.8 \text { or } \pi \times 18.6^{2} \times 24.8
$$

$$
=27000\left(\mathrm{~cm}^{3}\right)
$$

A1 Sight of 1086 to $1087\left(\mathrm{~cm}^{2}\right)$ (base area calculated with radius 18.6) OR 4345 to $4348\left(\mathrm{~cm}^{2}\right)$ (base area calculated with diameter) implies first M1 A1.
If diameter AND radius given and radius $\neq 18 \cdot 6$ either:

- award M1A0 (for sight of diameter $=37 \cdot 2$) if their stated radius is then used to find the volume of the cylinder ($2^{\text {nd }} \mathrm{M}$ mark is awarded) or
- award M1A1 (for sight of diameter $=37 \cdot 2$) if their incorrect radius is not used to find the volume of the cylinder (2 nd M mark is not awarded).

May be seen in parts.
Accept $3.14 \times 18.6^{2} \times 24.8$ or equivalent.
FT 'their stated radius' OR 'their stated diameter', provided it is halved at the appropriate stage.

A2
For A2, must be correct to 2 sf .

A1 for an answer between 26940 and $26960\left(\mathrm{~cm}^{3}\right)$ inclusive.

Note:
$\overline{\text { (Diameter }}=$) $24.8 \div 5 \times 3$ OR
(Radius =) $24.8 \div 5 \times 3 \div 2 \quad$ M0
(Diameter =) 14.88 (cm) OR

(Radius $=)$	$7.44(\mathrm{~cm})$	A 0
$\pi \times 7.44^{2} \times 24.8$	M 1	
$4300\left(\mathrm{~cm}^{3}\right)$	A 2	

A1 for answer between 4310 and $4314\left(\mathrm{~cm}^{3}\right)$ inclusive
If M0 (2 ${ }^{\text {nd }} \mathrm{M}$ mark) then award SC1 for an answer of either:

- $\quad 110000\left(\mathrm{~cm}^{3}\right)$ (from use of $\pi \times 37 \cdot 2^{2} \times 24 \cdot 8$ rounded correctly) OR
- $\quad 17000\left(\mathrm{~cm}^{3}\right)$ (from use of $\pi \times 14.88^{2} \times 24.8$ rounded correctly).
FT 'their stated diameter' correctly rounding to 2 sf for this SC1.

\begin{tabular}{|c|c|c|}
\hline 4. $\left(B C^{2}=\right) 9 \cdot 6^{2}+12 \cdot 8^{2}$ or equivalent
$$
\begin{aligned}
& \left(B C^{2}=\right) 256 \text { or }(B C=) \sqrt{ } 256 \\
& (B C=) 16(\mathrm{~cm}) \\
& C D=2 \times 60 \div 16 \text { or equivalent } \\
& (C D=) 7.5(\mathrm{~cm})
\end{aligned}
$$ \& M1
A1
A1

M2 \& | note: $\left(B C^{2}=\right) 92 \cdot 16+163 \cdot 84$ (ignore place values for M1) |
| :--- |
| Award M1 for the correct values substituted into the Cosine rule. |
| Allow ($B C=$) $\pm 16(\mathrm{~cm})$. |
| FT from M1 for the correctly evaluated square root of 'their 256 ' provided their answer > 12.8. |
| FT 'their derived $B C$ ' OR 'their stated 16' (not derived) provided $12 \cdot 8$ < 'their stated 16 < $22 \cdot 4$. |
| Award M1 for $60=1 / 2 \times 16 \times C D$ or equivalent. |
| Allow M2A1 for a correct embedded answer BUT M2A0 if contradicted by CD $\neq 7.5(\mathrm{~cm})$. |

\hline | 4. Alternative method: |
| :--- |
| Correct use of 'two-step' method $\begin{gathered} (B C=) 16(\mathrm{~cm}) \\ C D=2 \times 60 \div 16 \text { or equivalent } \end{gathered}$ $(C D=) 7.5(\mathrm{~cm})$ | \& M2

A1
$M 2$

A1 \& | A partial trigonometric method is MO. |
| :--- |
| FT 'their derived $B C$ ' $\mathbf{O R}$ 'their stated 16' (not derived) provided 12.8 < 'their stated 16 ' < 22.4. |
| Award M1 for $60=1 / 2 \times 16 \times C D$ or equivalent. |
| Allow M2A1 for a correct embedded answer BUT M2AO if contradicted by $C D \neq 7.5$ (cm). |

\hline | Organisation and Communication. |
| :--- |
| Accuracy of writing. | \& OC1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W 1 , candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

5. (a) $2 x(4 x+3 y)$	B2	Award B1 for $2 x(4 x \pm \ldots \ldots .$.$) or 2 x(\ldots \ldots .+3 y)$ Award B1 for a partial factorisation. i.e. $2\left(4 x^{2}+3 x y\right)$ or $x(8 x+6 y)$. Mark final answer.
5. (b)(i) $\quad(x+8)(x+5) \quad$ ISW	B2	B1 for ($x \ldots 8$)($x \ldots 5$).
5. (b)(ii) Any valid explanation e.g. "you could expand the two brackets" "expanding is the opposite of factorising" "multiply the brackets together" "solve $(x+8)(x+5)=0$, and then substitute the value(s) of x into $x^{2}+13 x+40$. It should give 0 ." "replace x in the brackets and expression with the same value. You should get the same answer."	E1	Allow "the two numbers need to add to 13 , but multiply to make 40" "Use FOIL (CAMO) to check" or other names explaining the method. Allow method shown to expand brackets for example: Do not accept $"(x+8)(x+5)=x^{2}+13 x+40 \text { " without further }$
6. $3 \cdot 648 \times 10^{4}$	B1	
7. (a) $(x=) 14 \cdot 5 \times \sin 42$ $=9 \cdot 7(02 \ldots)$	M2	Award M2 for $14.5 \times \cos 48$ or $\frac{14.5 \times \sin 42}{\sin 90}$ M1 for $\sin 42=\frac{x}{14.5}$ or $\cos 48=\frac{x}{14.5}$ or $\frac{x}{\sin 42}=\frac{14 \cdot 5}{\sin 90}$ Allow 10 from correct working. Award M2 A0 for an unsupported answer of $-13 \cdot 2895 \ldots$ (radians) or $8.88715 \ldots$... (gradians).
7. (a) Alternative method: Correct use of 'two-step' method. $(x)=9 \cdot 7(02 \ldots)(\mathrm{cm})$		A partial trigonometric method is MO. Accept an answer that rounds to 9.7 (cm) Award M2 AO for an answer of -13-2895... (radians) or 8.88715 (gradians).
7. (b) $(y=) \cos ^{-1} \frac{13 \cdot 5}{15 \cdot 8}$ Correct evaluation in the range $31 \cdot 3$ to $31 \cdot 4$	M2 A1	M1 for $\cos y=\frac{13.5}{15.8}(=0.854 .$. Allow 31 from correct working. Allow correct angles given in radians ($0 \cdot 5463$..) or gradians (34-7812....) Note: $\cos y=0.85 \quad y=31 \cdot 788 \ldots$ is awarded M2AO.
7. (b) Alternative method: Correct use of 'two-step' method. Correct evaluation in the range 31.3 to 31.4	M2 A1	A partial trigonometric method is MO. Allow 31 from correct working. Allow correct angles given in radians ($0.5463 .$.) or gradians (34-7812....)

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{ll}
\hline \text { 8. (a) Any intention of } \\
\text { length } \times \text { width } \times \text { height }=132 \\
\text { e.g. } \& 5 x\left(x^{2}+3\right)=132 \\
\& 5 \times x \times\left(x^{2}+3\right)=132 \text { or } \\
\& 5 x \times\left(x^{2}+3\right)=132 \text { or equivalent }
\end{array}
\] \& B1 \& Must be = 132 . May be seen in parts. Do not allow missing brackets e.g. \(5 \times x \times x^{2}+3=132\). \\
\hline \begin{tabular}{l}
8. (b)(i) \\
One correct evaluation \(2 \leq x \leq 3\) \\
2 correct evaluations \(2 \cdot 55 \leq x \leq 2 \cdot 75\), \\
(one value \(<132\), one value \(>132\)) \\
2 correct evaluations \(2 \cdot 55 \leq x \leq 2 \cdot 65\), (one value \(<132\), one value \(>132\))
\[
x=2.6
\]
\end{tabular} \& B1
B1

M1

A1 \& | Correct evaluation regarded as enough to identify if <132 or >132. If evaluations not seen accept too high' or 'too low'. |
| :--- |
| Look out for testing $5 x^{3}+15 x-132=0$ or $x^{3}+3 x=26 \cdot 4$ or equivalent |

\hline | 8. (b)(ii) |
| :--- |
| An answer in the range 9.76 to 10.16 (cm) | \& B1 \& | Answer may be shown on the diagram. |
| :--- |
| FT 'their $2 \cdot 6^{\prime 2}+3$. |
| FT $132 \div\left(5 \times\right.$ their $\left.x^{\prime}\right)$. |

\hline | 9. (Area of circular face $=) \pi \times 34^{2}(=1156 \pi)$ |
| :--- |
| (Curved surface area of hemisphere=) $2 \times \pi \times 34^{2}$ o.e. |
| (Total surface area=) $3468 \pi\left(\mathrm{~cm}^{2}\right)$ or answers in the range: $10889.4\left(\mathrm{~cm}^{2}\right)$ to 10896.6 (cm^{2}) | \& M1

M2

A1 \& | Accept values between 3629.8 and 3632.2 if $\pi \times 34^{2}$ or 1156π not seen. |
| :--- |
| 2312π or values between $7259 \cdot 6$ and $7264 \cdot 4$ |
| M1 for sight of $4 \times \pi \times 34^{2}$ or 4624π or values between 14519 and 14529. |
| Sight of $3 \times \pi \times 34^{2}$ implies M1 M2. |
| CAO. |
| Mark final answer. |
| Allow an answer of 10900 from correct working. |
| If no marks awarded, award SC2 for an unsupported $5 \times \pi \times 34^{2}$ (5780π or values between 18149 and 18 160.8). |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline $$
10 . \quad \frac{97.5}{0.55}
$$
$$
=177 \cdot 3
$$ \& M2

A1 \& | If many attempts are offered without a |
| :--- |
| method/answer being identified, then mark the final attempt. |
| If M2 not gained, award M1 A0 for correct use of values $97.5 \leq \mathrm{t}<98$ and $0.5<\mathrm{w} \leq 0.55$. |
| CAO. Must be to 1 decimal place. |
| Mark final answer. |
| An unsupported answer of 177.3 gains full marks. SC2 for an unsupported answer of 177•27(2727...), fractional equivalent $=1950 / 11$ |
| SC1 for an unsupported answer of 177 or 177.2 or for sight of 97.5 and 0.55 used within the same calculation. |

\hline | 11. $\sin B A D=\frac{2 \times 112}{10 \times 27} \quad$ or equivalent $(\mathrm{BAD}=) 56\left(\cdot 06 \ldots{ }^{\circ}\right)$ |
| :--- |
| (Area of shaded region $=$) $112-\frac{56(\cdot 06 \ldots)}{360} \times \pi \times 10^{2}$ |
| (Area of shaded region $=$) $63\left(\cdot 077 \ldots \mathrm{~cm}^{2}\right.$) or answers in the range: 63 to $63.2\left(\mathrm{~cm}^{2}\right)$ | \& M2

A1
M2

A1 \& | M1 for the correct use of the formula when \sin BAD is not the subject e.g. $112=1 / 2 \times 10 \times 27 \times \sin B A D$. |
| :--- |
| Accept $56 \cdot 1\left(^{\circ}\right)$. |
| Allow correct angles given in radians (0.9784..) or gradians (62•2896....) |
| F.T. their derived or stated value of angle BAD. M1 for $\frac{56(\cdot 06 \ldots)}{360} \times \pi \times 10^{2}\left(=48.92 \mathrm{~cm}^{2}\right)$ |

\hline | Alternative method for the first 3 marks |
| :--- |
| Correct use of a two-step method. $(B A D=) 56\left(\cdot 06 \ldots{ }^{\circ}\right)$ | \& M2

A1 \& | Example $\begin{aligned} & \text { (Perpendicular height of triangle }=\text {) } \\ & (B A D=) \sin ^{-1}[8 \cdot 2(96 \ldots) \div 10] \end{aligned}$ |
| :--- |
| Allow correct angles given in radians (0.9784...) or gradians (62.2896...) |

\hline | 12. $4(2 x+9)+5(3 x-7) \quad[=8 x+36+15 x-35]$ as a numerator within a single fraction |
| :--- |
| $(3 x-7)(2 x+9)$ as a denominator $=\frac{23 x+1}{(3 x-7)(2 x+9)} \text { or } \frac{23 x+1}{6 x^{2}+13 x-63}$ | \& M1

M1

A1 \& | Accept intention of brackets. $\text { e.g. } 4 \times 2 x+9+5 \times 3 x-7$ |
| :--- |
| CAO. Mark final answer. (If expanded, the denominator must be correct.) If no marks awarded, then SC1 for sight of $23 x+1$. |

\hline $$
\text { 13. } \quad \begin{array}{r}
\frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} \\
\\
=\frac{8}{125}(=0.064) \text { ISW }
\end{array}
$$ \& M1

A1 \& | Or equivalent, e.g. $0.4 \times 0.4 \times 0.4$ |
| :--- |
| SC1 for 27/125 (=0.216) for a correct evaluation of three odd numbers chosen. |

\hline
\end{tabular}

14. (Area $) \frac{1}{2} \times[12+0+2(12+10+6)]$ $=34$	M2 A1	Award M1 for 4 or more values correct and up to 1 incorrect OR all values correct but $h \neq 1$. F.T. from M1 provided h is correct. Ignore units. Condone 34^{2} if offered as a final answer.		
14. Alternative method: $\begin{gathered} (\text { Area }=) \frac{(12+12) \times 1}{2}+\frac{(12+10) \times 1}{2}+\frac{(10+6) \times 1}{2}+\frac{(6+0) \times 1}{2} \\ \left(=12^{2}+11+8+3\right) \end{gathered}$ $=34$	M2	$\times 1$ not required. Each area may be seen as the sum of the area of a rectangle and a triangle. M1 for the sum of these 4 areas with 1 error (may be repeated) in the substitution of these values. Condone missing brackets for M2 or M1 provided subsequent working leads to the appropriate values. F.T. from M1 provided h is correct. Ignore units. Condone 34^{2} if offered as the final answer. Treat splitting area into 8 parts as MR-1. If no marks awarded, award SC1 for sight of 12, 11, and 3 (not in a sum).		
$\begin{aligned} 15 .(\cos X Y Z=) \frac{34^{2}+55^{2}-73^{2}}{2 \times 34 \times 55} \quad \begin{array}{l} \left(=-\frac{287}{935}\right. \\ \text { OR }-0.30695 \ldots) \end{array} \\ (X Y Z=) 107 \cdot 8\left(75 \ldots .^{\circ}\right) \text { or } 107 \cdot 9\left(^{\circ}\right) \text { or } 108\left(^{\circ}\right) \end{aligned}$	M2	If no marks awarded, award SC1 for one of the following: - The correct evaluation of either of the two other angles. $Y X Z=45 \cdot 8\left(\ldots{ }^{\circ}\right)$ and $X Z Y=26 \cdot 3\left(\ldots{ }^{\circ}\right)$ - An answer of $\mathrm{XYZ}=72 \cdot 1\left(\ldots{ }^{\circ}\right)$ (from 1 slip using the cosine rule).		
		Degrees	Radians	Gradians
		107.875.	1.882.	119.861.
		72-1...	1.258...	80.138...
		45•8...	0.799...	50.901...
		26.3.	0.459 .	29.236...

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \text { 17. Method using the linear scale factor } \\
\& \text { (Linear scale factor=) } \sqrt[3]{\frac{4913}{8000}} \text { OR } \frac{\sqrt[3]{4913}}{\sqrt[3]{8000}}\left(=0.85 \text { or } \frac{17}{20}\right. \text {) } \\
\& \begin{array}{c}
\text { (Height of Solid } B=) \sqrt[3]{\frac{4913}{8000}} \times 30 \\
=25.5(\mathrm{~cm})
\end{array} \\
\& \hline
\end{aligned}
\] \& B1
M1
A1 \& \begin{tabular}{l}
Or equivalent. \\
F.T. their derived linear scale factor (from \(\sqrt[3]{ }\)) CAO.
\end{tabular} \\
\hline \begin{tabular}{l}
17. Alternative method using the linear scale factor (Linear scale factor=) \(\sqrt[3]{\frac{8000}{4913}}\) OR \(\sqrt[{\sqrt[3]{8000}}]{\sqrt[3]{4913}}(=1 \cdot 17647 \ldots\) or \(\frac{20}{17}\) \\
(Height of Solid \(B=\)) \(30 \div \sqrt[3]{\frac{8000}{4913}}\) \(=25.5(\mathrm{~cm})\)
\end{tabular} \& B1

M1

A1 \& | Or equivalent. |
| :--- |
| F.T. their derived linear scale factor (from $\sqrt[3]{ }$) CAO |

\hline | 17. Method using the volume scale factor $\frac{h^{3}}{30^{3}}=\frac{4913}{8000}(=0 \cdot 614 \ldots)$ |
| :--- |
| (Height of solid $B=$) $\sqrt[3]{30^{3} \times \frac{4913}{8000}}$ OR $\sqrt[3]{30^{3} \div \frac{8000}{4913}}$ $=25 \cdot 5(\mathrm{~cm})$ | \& B1

M1
A1 \& Must include $\frac{h^{3}}{30^{3}}$ or equivalent, e.g. $\left(\frac{h}{30}\right)^{3}=\frac{4913}{8000}$
CAO

\hline 17. Alternative method using the volume scale factor

$$
\frac{30^{3}}{h^{3}}=\frac{8000}{4913}(=1 \cdot 628 \ldots)
$$ \& B1

M1

A1 \& | Must include $\frac{30^{3}}{h^{3}}$ or equivalent, e.g. $\left(\frac{30}{h}\right)^{3}=\frac{8000}{4913}$ |
| :--- |
| CAO |

\hline
\end{tabular}

