GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - UNIT 1 (FOUNDATION TIER)
$3300 \mathrm{U} 10-1$

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2019 MARK SCHEME

5(a) $481 \cdot 63$	B1	Do not accept 481•630
5(b) 64	B1	
5(c) 7	B1	Do not accept 7×7 or 7x7=49 alone.
5(d) (0) 03825	B1	
Ribbon mark 6(a),(b),(c),(d) 6(a) Football	B1	
Ribbon mark 6(a),(b),(c),(d) 6(b) $1 / 4$ or equivalent ISW	B1	Do not accept incorrect notation; e.g. 1 in 4,1 out of 4, 1:4.
$\begin{aligned} & \text { Ribbon mark 6(a),(b),(c),(d) } \\ & 6(c) 1 / 4 \times 60 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept 15 out of 60. Award SC1 only, for a final answer of 15/60
Ribbon mark 6(a),(b),(c),(d) 6(d) Correctly labelled axes. Uniform scale starting from zero. Correct equal width bars for football, swimming and tennis.	B1 B1 B1	Vertical axis labelled 'number (of people)' or 'people' or 'frequency' AND horizontal axis marked with the sports. Correct heights for 'their scale' (30 and 15) FT their (c) if possible: 'their swimming' = 'their tennis' AND either 'their football' $=2 \mathrm{x}$ 'their tennis' or 'their football' $=60-2 \times$ 'their tennis'. If no scale visible, allow final B1 for bars drawn in correct proportions.
$\begin{aligned} & \text { 7.(Number across }=20 \div 4=) 5 \\ & \text { OR (Number down }=6 \div 2=\text {) } 3 \\ & \text { (Total number of small rectangles }=\text {) } 5 \times 3 \end{aligned}$	B1 M1 A1	Sight of 5 or 3, not in incorrect statement or working FT 'their stated across and down' CAO
7. Alternative method (Area rectangle $A=2 \times 4=$) 8 (cm^{2}) $O R$ (Area rectangle $B=6 \times 20=$) $120\left(\mathrm{~cm}^{2}\right)$ (No. of rectangle $A=$) $120 \div 8$	B1 M1 A1	Sight of 8 or 120, not in incorrect statement or working FT 'their stated areas' CAO
Organisation and Communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means

| 8(a) $5 p$ | B1 | |
| :--- | :--- | :--- | :--- | :--- |
| 8(b) (i) $(x=) 8$ | B1 | Accept embedded answer |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
12.(a) Any correct total of 2. \\
e.g. \(\quad 3+3+3-7\)
\end{tabular} \& B1 \& B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. \(3 \times 3\) is not acceptable for \(3+3+3\). Allow multi-digit numbers made from 3 or/and 7 . e.g. \(33,37,373\) etc. \\
\hline 12.(b) Any correct total of 8 . e.g. \(7-3+7-3\) \& B1 \& B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. \(2 \times 7\) is not acceptable for \(7+7\). Allow multi-digit numbers made from 3 or/and 7 . e.g. 33, 37, 373 etc. \\
\hline \begin{tabular}{l}
12.(c) Any correct total of 19. \\
e.g. \(3+3+3+3+7\)
\end{tabular} \& B1 \& B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. \(4 \times 3\) is not acceptable for \(3+3+3+3\). Allow multi-digit numbers made from 3 or/and 7 . e.g. 33, 37, 373 etc. \\
\hline 13. \& B1
B1

B2 \& | Allow intent of drawing circles and a rectangle. |
| :--- |
| Two intersecting circles AND labelled A and B AND within a rectangle. |
| Allow missing ' ε ' symbol. |
| For unambiguous indication that the set B consists of 12, 15 and 18 only. |
| $B 0$ if any of these numbers are repeated outside B. |
| All eleven numbers in correct position (with or without a rectangle), with no other or repeated numbers. |
| B1 for six to ten numbers in correct position. Repeated numbers should not be credited. Other numbers may be ignored for this B1 mark. |

\hline 14.(a)(i) $\quad(x=) 147$ \& B1 \& Accept embedded answer. Mark final answer.

\hline $$
\text { 14.(a)(ii) } \begin{aligned}
& \\
& 13 f-6 f=5-2 \\
& 7 f=3 \\
&(f=) 3 / 7
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \mathrm{~B} 1
\end{aligned}
$$

\] \& | F.T. until $2^{\text {nd }}$ error. |
| :--- |
| If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. |
| Mark final answer. |
| Allow 0.43 or $0.428 \ldots$ as a final answer. |

\hline | 14.(b) ' $5 n-3$ can be even or odd’ ticked or implied AND a valid explanation given. |
| :--- |
| e.g. ' $5 \times 3-3=12$ (even) and $5 \times 4-3=17$ (odd)' |
| 'if n is odd you get even (but) if n is even you get odd' | \& E1 \& | A valid explanation implies |
| :--- |
| ' $5 n-3$ can be even or odd', unless contradicted. |
| Allow e.g. ' $15-3=12,20-3=17$ '. |
| Allow a correct sequence shown e.g. $2,7,12, \ldots$. |
| Do not accept |
| ' n can be anything', ' n can be odd or even'. |
| Do not accept an explanation that only uses 5 n . |
| e.g. ' $5 \times 2=10$ (even), $5 \times 3=15$ (odd)' |

\hline
\end{tabular}

15. $\begin{aligned} & \text { (Area of the triangle } C D E=\text {) } 14=\frac{4 \times C E}{2} \\ & \qquad(C E=) 7(\mathrm{~cm}) \\ & \text { (Area ABCE }=7 \times 7=) \quad 49\left(\mathrm{~cm}^{2}\right) \\ & \text { (Area of whole shape }=49+14=) 63\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1 B1 B1	Lengths may be shown on the diagram. Accept equivalent e.g. $28=4 \times$ CE. FT 'their stated or shown length $C E$ '. FT 'their stated or shown area of square' +14
	M1 A1 M1 A1	Lengths may be shown on the diagram. FT 'their stated or shown length CE (=CB)' consistently as 'their 7 '.
16. $\begin{gathered} \text { (a =) } \frac{180-110}{2} \quad \text { or equivalent. } \\ =35\left({ }^{\circ}\right) \\ b(=180-90-35)=55\left({ }^{\circ}\right) \\ c(=90+55) \\ \text { OR c }(=180-35) \\ 145\left({ }^{\circ}\right) \\ 145\left({ }^{\circ}\right) \end{gathered}$	M1 A1 B1 B1	OR FT 90 - 'their a'. OR FT 90 + 'their b' OR FT 180 - 'their a'

GCSE MARKING SCHEME

SUMMER 2019

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS (NEW)

SUMMER 2019 MARK SCHEME

GCSE Unit 2	MATHEMATICS Foundation Tier	Mark	Comments
1.	(£)5.84 $(£) 4.67$ (£)1.45 (£)7.08	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
2.(a)	Pentagon	B1	
2.(b)	Rhombus	B1	Allow equilateral kite, but not kite or parallelogram.
2.(c)	Cylinder	B1	Allow circular prism.
3.(a)	(47,) 94, 141	B1	Ignore additional multiples.
3.(b)	52	B1	
3.(c)	209	B1	
4.(a)	Midpoint unambiguously indicated	B1	Allow $+/-2 \mathrm{~mm}$.
4.(b)	Unambiguous parallel line drawn through C	B1	Allow + - 2°.
5.(a)	9 (and) 16	B2	Allow 3^{2} (and) 4^{2}. B1 for a sum of two square numbers less than 30 seen in workings or two square numbers less than 30 written on the answer line.
$\begin{array}{r} \text { 5.(b) } \\ \bullet \\ \bullet \\ \bullet \end{array}$	Accept suitable explanations, e.g. the sum of three even numbers will be even (and 23 is odd) when you add any amount of even numbers the answer is always even (whilst 23 is odd). (23 is odd, but) even + even + even $=$ even	E1	Allow \cdot even + even $=$ even, - because 23 is odd.
$6 .$	TRUE FALSE TRUE FALSE	B2	For all four correct. B1 for 3 correct.
7.(a)	60 (\%)	B2	B1 for equivalent fraction or decimal ($0.6,3 / 5$, 12/20). If B 2 not awarded, $\mathrm{F} . \mathrm{T}$. their fraction (except for $1 / 2$, $1 / 4$ and $3 / 4$) correctly converted to a percentage for B1.
7.(b)	Multiply by 4	E1	Accept other correct explanations e.g. divide (the number) by 5 then multiply by 20 , double (the number) and double (it) again or divide by $1 / 4$.
7.(c)	Accept suitable explanations, e.g. 0.125 (is greater than) 0.1 5/40 (is greater than) 4/40	E1	Award E1 for other correct explanations e.g. a larger denominator means each part of the whole is smaller, or for correct evaluation of $1 / 8$ and $1 / 10$ of a chosen number.
8.(a)	$65\left(^{\circ}\right.$)	B1	Allow $\pm 2^{\circ}$
8.(b)	225°	B1	
8.(c)	$\begin{aligned} & (\text { Small angle }=180 \div 6=) 30\left({ }^{\circ}\right) \\ & (\text { Large angle }=5 \times \text { Small angle }=) 150\left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Check diagram, though answer space takes precedence. F.T. 'their small angle' $\times 5$ or 180 - 'their small angle ', provided answer is less than 180°. If no marks awarded, award B1 for both correct angles given in reverse.

14. Two relevant (sides of one double the other) rectangles or squares considered. Perimeter AND area of $1^{\text {st }}$ rectangle correctly calculated. Perimeter AND area of $2^{\text {nd }}$ rectangle correctly calculated. Clear statement that the perimeter has been doubled but the area has not been doubled (and that Catrin is incorrect.)	M1 B1 B1 A2	Sketch shown or lengths stated. If M0, only the B marks are available. Ignore missing units BUT penalise -1 , once only, for incorrect units. (Applies to these B1 marks.) FT 'their stated values' for both perimeter and area. If not A2, then A1 for correct perimeter statement for 'their values'. OR A1 for correct area statement for 'their values'. Accept statement that area is 4 times as big. Allow for A2 'only the perimeter has been doubled'. (implies that the area has not been doubled.) Also for A2. 'The area is not doubled so Catrin is incorrect' answers the question. In this case Award SC1 and SC1 (instead of B1 and B1) if areas correctly calculated. Correct statements, for BOTH perimeter and area, with no supporting work gains SC1.
15. (18% of $£ 256=) 0 \cdot 18 \times 256$ $=(£) 46.08$ (Larger share $=) \frac{2 \times 46.08}{3}$ $=(£) 30.72$ (To the nearest $10 \mathrm{p}=$) (£)30.7(0)	M1 A1 M1 A1 B1	Allow (£)46.10 FT 'their stated 18% '. If M0 allow SC1 for sight of $(£) 15.36$ FT 'their larger share' (not 'their 18\%') and only if rounding required.
15. Alternative method 1 $\begin{aligned} (\text { Larger share of } £ 256 & =) \quad \frac{2 \times 256}{3} \\ & =(£) 170.66(. .) \end{aligned}$ (18% of $£ 170.66=$) 0.18×170.66 $=(£) 30.72$ (To the nearest 10p =) (£)30.7(0)	M1 A1 M1 A1 B1	Allow (£) 170.70 If M0 allow SC1 for sight of (£)85.33. FT 'their stated larger share'. FT 'their 18\%' (not 'their larger share') and only if rounding required.
15. Alternative method 2 $\begin{array}{r} \text { (Larger share of } 18 \%=) \quad \frac{2 \times 18}{3} \\ =12(\%) \end{array}$ $(12 \%$ of $£ 256=) 0.12 \times 256$ $=(£) 30.72$ (To the nearest $10 p=$) (£)30.7(0)	M1 A1 M1 A1 B1	If M0 allow SC1 for sight of 6(\%). FT 'their derived larger \%'. FT 'their amount' only if rounding required.

\begin{tabular}{|c|c|c|}
\hline \[
\text { 16.(a) } \begin{array}{ll}
\\
\& a=-6 \\
b=-5
\end{array}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
\hline
\end{tabular} \& Values may be seen on the diagram. \\
\hline 16.(b) Correct shape in correct position. \& B3 \& B2 for a correct enlargement in incorrect position. B1 for one correct side in correct position. If no marks allow SC1 for showing all the 'rays' from \((1,2)\). \\
\hline \begin{tabular}{l}
17. \(P(\) Alison chooses letter \(R)=2 / 10\) or equivalent. \\
\(P(\) Sarfraz chooses letter \(R)=1 / 4\) or equivalent. \\
Use of \(2 / 10 \times 100\) OR \(1 / 4 \times 100\) \\
20 AND 25 clearly implying that Sarfraz is the most likely to choose letter \(R\)
\end{tabular} \& B1
B1

M1

A1 \& | B1 for sight of $2 / 10$ if unambiguously for Alison. B1 for sight of $1 / 4$ if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'. B1 marks may be implied in subsequent work. Calculation may be done in stages. |
| :--- |
| There is no requirement to tick the box as long as there is no contradiction. |
| Do not accept, on its own, e.g. |
| 'Sarfraz has less letters to choose from' for the A1. |

\hline 17. Alternative method $P($ Alison chooses letter R) $=2 / 10$ or equivalent. $P($ Sarfraz chooses letter $R)=1 / 4$ or equivalent. \& B1
B1 \& B1 for sight of $2 / 10$ if unambiguously for Alison. B1 for sight of $1 / 4$ if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'

\hline | Attempting to give probabilities in a common format. |
| :--- |
| Correct common format |
| e.g. 4/20 AND 5/20 or 0.2 AND 0.25 clearly implying that Sarfraz is the most likely to choose letter R | \& M1

A1 \& | There is no requirement to tick the box as long as there is no contradiction. |
| :--- |
| Do not accept, on its own, e.g. |
| 'Sarfraz has less letters to choose from' for the A1. |

\hline
\end{tabular}

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - UNIT 1 (INTERMEDIATE TIER)
3300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2019 MARK SCHEME

5.(a) Any correct total of 2. e.g. $\quad 3+3+3-7$	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. 3×3 is not acceptable for $3+3+3$. Allow multi-digit numbers made from 3 or/and 7 . e.g. 33, 37,373 etc.
5.(b) Any correct total of 8. $\text { e.g. } 7-3+7-3$	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. 2×7 is not acceptable for $7+7$. Allow multi-digit numbers made from 3 or/and 7 . e.g. 33, 37, 373 etc.
5.(c) Any correct total of 19. $\text { e.g. } \quad 3+3+3+3+7$	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. 4×3 is not acceptable for $3+3+3+3$. Allow multi-digit numbers made from 3 or/and 7 . e.g. $33,37,373$ etc.
6.	B1 B1 B2	Allow intent of drawing circles and a rectangle. Two intersecting circles AND labelled A and B AND within a rectangle. Allow missing ' ε ' symbol. For unambiguous indication that the set B consists of 12, 15 and 18 only. $B 0$ if any of these numbers are repeated outside B. All eleven numbers in correct position (with or without a rectangle), with no other or repeated numbers. B1 for six to ten numbers in correct position. Repeated numbers should not be credited. Other numbers may be ignored for this B1 mark.
7.(a) 5(2a-3)	B1	Mark final answer.
7.(b)(i) ($\mathrm{x}=$) 147	B1	Accept embedded answer. Mark final answer.
$\text { 7.(b)(ii) } \begin{aligned} & \\ & \\ & \\ & \\ & \\ 7 f & =5-2 \\ & (f=3 \\ & =3 / 7 \end{aligned}$	B1 B1 B1	F.T. until $2^{\text {nd }}$ error. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. Mark final answer. Allow 0.43 or 0.429 or $0.428 \ldots$ as a final answer.
7.(c) ' $5 \mathrm{n}-3$ can be even or odd' ticked or implied AND a valid explanation given. e.g. ' $5 \times 3-3=12$ (even) and $5 \times 4-3=17$ (odd)' 'if n is odd you get even (but) if n is even you get odd'	E1	A valid explanation implies ' $5 n-3$ can be even or odd', unless contradicted. Allow e.g. ' $15-3=12,20-3=17$ '. Allow a correct sequence shown e.g. 2, 7, 12, Do not accept ' n can be anything', ' n can be odd or even'. Do not accept an explanation that only uses 5 n . e.g. $' 5 \times 2=10$ (even), $5 \times 3=15$ (odd)'

8. $\begin{aligned} & \text { (Area of the triangle CDE }=\text {) } 14=\frac{4 \times \text { CE }}{2} \\ & \qquad(C E=) 7(\mathrm{~cm}) \\ & \text { (Area ABCE }=7 \times 7=) \quad 49\left(\mathrm{~cm}^{2}\right) \\ & \text { (Area of whole shape }=49+14=) 63\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1 B1 B1	Lengths may be shown on the diagram. Accept equivalent e.g. $28=4 \times$ CE. FT 'their stated or shown length CE'. FT 'their stated or shown area of square' +14 .
$\begin{aligned} & \text { 8. Alternative method } \\ & \begin{array}{rl} \text { (Area of the triangle } C D E & 14=\frac{4 \times C E}{2} \\ \text { (Area Trapezium } A B C D=) & \\ & (C(7+4)+7] \times 7 \\ & =63\left(\mathrm{~cm}^{2}\right) \end{array} \end{aligned}$	M1 A1 M1 A1	Lengths may be shown on the diagram. FT 'their stated or shown length CE (=CB)' consistently as 'their 7'.
Accuracy of writing.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc
9.	M1 A1 B1 B1	OR FT 90 - 'their a'. OR FT 90 + 'their b'. OR FT 180 - 'their a

10.(a) For a method that produces 2 prime factors from the set $\{3,3,5,7\}$ before the $2^{\text {nd }}$ error. $\begin{aligned} & 3,3,5,7 \\ & 3^{2} \times 5 \times 7 \end{aligned}$	M1 A1 B1	C.A.O. For sight of the four correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Allow $\left(3^{2}\right)(5)(7)$ and 3^{2}.5.7 Inclusion of 1 as a factor gets B0.
10.(b) $42=2 \times 3 \times 7$ or equivalent correct strategy. $(\mathrm{HCF}=) \quad 21$	M1 A1	M1 for sight of 2, 3, 7 'together'. (Not for $2 \times 21,3 \times 14$ and 6×7.) (Not for just listing all factors 1,2,3,6,7,14,21.) M1A0 for 3×7. FT 'their answer to 10(a)' only if of equivalent difficulty (at least two common prime factors).
11. -13 Scale on y-axis '2cm square $\equiv 10$ units'. At least 7 correct plots and no incorrect plots. A smooth curve drawn through their plots.	B1 B1 P1 C1	F.T. 'their ($-2,-13$)' AND 'their uniform scale' if possible. Allow $\pm 1 / 2$ a small square'. F.T. 'their 8 plots'. (Only if an uniform scale used.) OR a curve through the 7 given plots and ($-2,-13$). Allow intention to pass through their plots (within 1 small square, either horizontally or vertically of the point).
12. $\begin{aligned} & \text { (Angle AÔB or exterior angle }=) \frac{360}{8}\left({ }^{\circ}\right) \\ & =45\left({ }^{\circ}\right) \\ & \qquad \begin{aligned} (\mathrm{OÂB}=) \frac{180-45}{2} & =67 \cdot 5\left({ }^{\circ}\right) \end{aligned} \end{aligned}$	M1 A1 M1 A1	Answers/working may be seen on diagram. Sight of 45 (even e.g. OÂB $=45$) gains M1A1. FT 'their 45^{\prime} (but not 60°).
12. Alternative method 1 (Sum of interior angles $=$) $(8-2) \times 180^{\circ}$ or equivalent $=1080\left({ }^{\circ}\right)$ $(O A \hat{B}=) 1 / 2 \times(1080 \div 8)$ or equivalent $\left.=67 \cdot 5{ }^{\circ}\right)$	M1 A1 M1 A1	(Interior angle =) $135\left({ }^{\circ}\right.$) implies M1A1 FT 'their interior angle sum' ($\neq 1440$)
12. Alternative method 2 (Using 16 right-angled triangles.) (Angle at $O=$) $360 / 16$ $\left(O \hat{A} B \Rightarrow 180-90-22 \cdot 5\left(^{\circ}\right)\right.$ $=67.5\left(^{\circ}\right)$	M1 A1 M1 A1	FT 'their 22.5'.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
13. \\
Correct construction method for perpendicular bisector with line drawn. \\
Correct construction method for \(60^{\circ}\) at point A. \\
Correct construction method for bisecting an angle with line drawn. \\
Point P clearly identified
\end{tabular} \& B1
B1
B1
B1 \& \begin{tabular}{l}
Correct construction arcs must be seen for the first three B1 marks. \\
Two pairs of Intersecting arcs (centres at A and B) \\
Allow if drawn at point \(B\). \\
Allow B1 for correct method (tolerance will be penalised with final B0). \\
FT 'their angle of \(60^{\circ}\) ' drawn at point \(A\) or point \(B\). \\
C.A.O. within tolerance. \\
Intersecting lines alone with no indication that this is point \(P\) is not sufficient for this \(B 1\). \\
Do not penalise if both possible positions shown. \\
Final B1 may be awarded after B0B0B0.
\end{tabular} \\
\hline \begin{tabular}{l}
13. Alternative method \\
Correct construction method for \(60^{\circ}\) at point \(A\) (or B). \\
Correct construction method for bisecting the angle at \(A\) (or \(B\)) with line drawn. \\
Repeating the above two stages at \(B\) (or \(A\)) \\
Point P clearly identified
\end{tabular} \& \(B 1\)
\(B 1\)
\(B 1\)
\(B 1\) \& \begin{tabular}{l}
Correct construction arcs must be seen for the first three B1 marks \\
Allow B1 for correct method (tolerance will be penalised with final BO). \\
C.A.O. within tolerance. Intersecting lines alone with no indication that this is point \(P\) is not sufficient for this B1. \\
Do not penalise if both possible positions shown. Final B1 may be awarded after B0B0B0.
\end{tabular} \\
\hline \begin{tabular}{l}
14. Sight of any TWO of 30, 2 or \(0 \cdot 5\) \\
OR Sight of any TWO of 30,8 or \(0 \cdot 5\) as appropriate approximations. \\
\(\frac{30 \times 8}{0.5}\) or equivalent.
\end{tabular} \& B1
M1

A1 \& | Allow $30 \cdot 2$ for 30 . |
| :--- |
| Equivalent e.g. $\frac{30 \times 2 \times 2 \times 2}{1 / 2}$ or $\frac{30 \times 2^{3}}{0.5}$ |
| Must be seen, but allow if attempted calculation done in steps. |
| M0 for exact calculation. |
| C.A.O. Allow $483 \cdot 2$ if $30 \cdot 2$ used. |

\hline
\end{tabular}

15.(a) 0.32	B1	
$\begin{aligned} & \text { 15.(b) Sample number from Anglesey on } 2^{\text {nd }} \text { day } \\ & =3000 \times 0.42=1260 \\ & \text { (Rel.Fqu. for two days }=\frac{640+1260}{2000+3000} \\ & =0.38 \end{aligned}$	M1 A1 M1 A1	Allow M1A1 for sight of 1260 e.g. 1260/3000 FT 'their 1260'.
15.(c) 'Answer to part (b)' noted AND Valid explanation e.g. 'more people sampled'	E1	Explanation must refer to the sample being the largest. Allow e.g 'from both days', 'number of people added', 'frequencies are added'. Do not accept 'relative frequencies are added'.
16.(a)(i) $\quad 425 \mathrm{~kg}$	B1	
16.(a)(ii) 21.5 s	B1	
16.(a)(iii) 83 people	B1	
16(b) $\quad 2.38 \times 10^{-2}$	B2	B1 for sight of a correct answer but not in standard form. e.g. 23.8×10^{-3} or 0.0238 .
17.(a) $5 \mathrm{n}<3 \mathrm{n}+7$ or equivalent ISW	B2	$2 \mathrm{n}<7$ OR $\mathrm{n}<7 / 2$ implies B2. Ignore use of a different letter e.g. $5 \mathrm{x}<3 \mathrm{x}+7$. Use of ' \leq ' is B1. B1 for sight of $3 n+7$ in an inequality.
17.(b) $\quad 2 \mathrm{n}<7$ OR $\mathrm{n}<7 / 2$ $($ Greatest amount $=) \quad(£) 3$	B1 B1	FT 'their inequality' if of equivalent difficulty. May be seen in part (a). FT 'their $\mathrm{n}<\mathrm{k}$ '. BO if they have ' $\mathrm{n}>\mathrm{k}$ '. B0 if it leads to $n<1$ An answer of ($£$)3 gains B1B1 (unless from incorrect algebra work).
18.(a) 0.7 shown for 'Does not go on tour bus'. Use of $0.3 \times \ldots \ldots=0.24$ $\mathrm{P}($ sees show $)=0.8$ Second set of branches $0 \cdot 8,0 \cdot 2,0 \cdot 8,0 \cdot 2$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \end{aligned}$	Allow M1A1 if $0 \cdot 8$ seen on one the 'sees show' branches. FT 'their $0 \cdot 8$ ' only if M1 awarded. ($0 \cdot 24,0.76,0 \cdot 24,0.76$ is MOAOAO)
18.(b) $0.7 \times 0.2=0.14 \quad$ ISW	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their values' if both between 0 and 1.

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - UNIT 2 (INTERMEDIATE TIER)
3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS (NEW)

SUMMER 2019 MARK SCHEME

5. $\quad(18 \%$ of $£ 256=) 0.18 \times 256$ (Larger share $=) \frac{2 \times 46.08}{3}$ $=(£) 30.72$ (To the nearest $10 \mathrm{p}=)(£) 30.7(0)$	M1 A1 M1 A1 B1	Allow (£)46.10 FT 'their stated 18% '. If M0 allow SC1 for sight of $(£) 15.36$ FT 'their larger share' (not 'their 18\%') and only if rounding required.
$\left.\begin{array}{l} \text { 5. Alternative method 1 } \\ \text { (Larger share of } £ 256= \\ =(£) 170.66(. .) \end{array} \quad \begin{array}{rl} (18 \% \text { of } £ 170.66=) 0.18 \times 170.66 \\ & =(£) 30.72 \end{array}\right\}$	M1 A1 M1 A1 B1	Allow (£)170.70 If MO allow SC1 for sight of (£)85.33. FT 'their stated larger share'. FT 'their 18\%' (not 'their larger share') and only if rounding required.
	M1 A1 $\begin{aligned} & \text { M1 } \\ & A 1 \end{aligned}$ B1	If M0 allow SC1 for sight of 6(\%). FT 'their derived larger \%'. FT 'their amount' only if rounding required.
Accuracy of writing.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc
6.(a) $\quad \mathrm{a}(7 \mathrm{~b}+11)$	B1	Allow 1a(7b + 11)
6.(b) $\quad \mathrm{x}(\mathrm{x}-8)$	B1	Allow 1x(x-8)
6.(c) $8 y-12 y^{2}$	B2	Must be an expression for B2. B1 for sight of $8 y$ or $-12 y^{2}$. Mark final answer.
$\text { 7.(a) } \quad \begin{aligned} & \\ & =-6 \\ b & =-5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Values may be seen on the diagram.
7.(b) Correct shape in correct position.	B3	B2 for a correct enlargement in incorrect position. B1 for one correct side in correct position. If no marks allow SC1 for showing all the 'rays' from $(1,2)$.

8. $\quad P($ Alison chooses letter R) $=2 / 10$ or equivalent. $P($ Sarfraz chooses letter $R)=1 / 4$ or equivalent. Use of $2 / 10 \times 100$ OR $1 / 4 \times 100$ 20 AND 25 clearly implying that Sarfraz is the most likely to choose letter R	B1 B1 M1 A1	B1 for sight of $2 / 10$ if unambiguously for Alison. B1 for sight of $1 / 4$ if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'. B1 marks may be implied in subsequent work. Calculation may be done in stages. There is no requirement to tick the box as long as there is no contradiction. Do not accept, on its own, e.g. 'Sarfraz has less letters to choose from' for the A1.
8. Alternative method $P($ Alison chooses letter $R)=2 / 10$ or equivalent. $P($ Sarfraz chooses letter $R)=1 / 4$ or equivalent. Attempting to give probabilities in a common format. Correct common format e.g. 4/20 AND 5/20 or 0.2 AND 0.25 clearly implying that Sarfraz is the most likely to choose letter R	B1 B1 M1 A1	B1 for sight of 2/10 if unambiguously for Alison. B1 for sight of 1/4 if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four' There is no requirement to tick the box as long as there is no contradiction. Do not accept, on its own, e.g. 'Sarfraz has less letters to choose from' for the A1.
9.(a) $3 \mathrm{n}+5$ or equivalent	B2	B1 for sight of 3n. B0 for $-3 n$ Mark final answer.
9.(b) $3 t=r+8$ or $r+8=3 t$ or $-3 t=-r-8$ $t=\frac{r+8}{3} \quad$ or $\quad \frac{r+8}{3}=t \quad$ or $\quad t=\frac{-r-8}{-3}$	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	F.T. only from $3 t= \pm r \pm 8$, stated or implied. ($3 t=r+8$ will have already gained the previous B1.) B 1 B 0 for $-t=\frac{-r-8}{3}$ or equivalent. Mark final answer. Note Allow B1B0 for $t=(r+8) \div 3$ with or without brackets. Allow B1B0 for $\frac{r+8}{3}$ ('t' missing)
9.(c) $6 x+4=46$ OR $3 x+2=23$ $6 x=42$ OR $3 x=21$ $(x=) 7$	B2 B1 B1	B1 for $\quad(x+5)+(2 x-3)+(x+5)+(2 x-3)=46$ or equivalent e.g. $(x+5)+(2 x-3)=23$ FT collection of 'their terms' if of equivalent difficulty. (linear equation only.) FT only from $a x=b$. Allow a fraction from a FT value unless x is a whole number. ($x=$) 7 gains all four marks. Each B mark implies all previous B marks. Mark final answer.
9.(c) Alternative method A trial showing correct values and understanding of perimeter. (e.g. $2(4+5)+2(2 \times 4-3)=28$) An improved trial. $(x=) 7$	$B 1$ $B 1$ $B 2$	Consistent use of x AND correct evaluation. Dependent on first B1. If $1^{\text {st }}$ trial is using ' 7 ' award B1B1 followed by B1 if left embedded but B2 if shown as $x=7$. B1 for an implied / embedded ' $x=7$ ' but not shown as $x=7$ ($x=$) 7 gains all four marks. Mark final answer.

10. Intent to square at least two of the three values.

Comparing $(25 \cdot 6)^{2}$ with $(12 \cdot 8)^{2}+(22 \cdot 7)^{2}$ or
Any intent to compare any other relevant values. (e.g. $(25 \cdot 6)^{2}-(22 \cdot 7)^{2}$ with $(12 \cdot 8)^{2}$ or $\left.\sqrt{[}(12 \cdot 8)^{2}+(22 \cdot 7)^{2}\right]($ with $25 \cdot 6)$)

Correct evaluation of value(s) to be compared.
(e.g 'sight of 655.36 WITH 679.13' or
'sight of $140 \cdot 07$ WITH 163.84' or
'sight of 26.06 (WITH 25•6)')
Statement that it is NOT possible
10. Alternative method 1

Intent to use two right-angled trig ratios using 2
different pairs of given sides

Correct right-angled trig ratio used twice, using 2 different given sides, in order to compare

- the values of the same angle or
- the sum of the two angles with 90°.

Correct evaluation of value(s) to be compared. e.g. sight of any two of $30\left({ }^{\circ}\right), 27.5 \ldots\left({ }^{\circ}\right)$ and 29.4...(${ }^{\circ}$) OR sight of $30\left({ }^{\circ}\right)$ and $60.58 \ldots\left(^{\circ}\right)$ (and the sum to be compared with 90°)

$(\cos A=)\left(12.8^{2}+22.7^{2}-25.6^{2}\right) /(2 \times 12.8 \times 22.7)$ (= $2377 / 58112$ or $0 \cdot 0409 .$.

$$
(A=) 87\left(.6557 \ldots{ }^{\circ}\right)
$$

Statement that it is NOT possible

11.(a) $\quad A \cap B$	B
11.(b) $\quad B^{\mathrm{I}} \quad$	B

Four numbers with a range of 10.
Four numbers with a total of 36.
Four numbers with a median of 8.
Possible answers for all three marks are
$5,5,11,15$ or $5,6,10,15$ or $5,7,9,15$ or $5,8,8,15$

A1

A1
B1

B1
B1

B1

B1

S1 (Note:
$12 \cdot 8^{2}=163 \cdot 84,22 \cdot 7^{2}=515 \cdot 29$ and $25 \cdot 6^{2}=655 \cdot 36$)
M1 The comparison attempted must show both intended calculations e.g. $(25 \cdot 6)^{2}$ AND $(12 \cdot 8)^{2}+(22 \cdot 7)^{2}$ unless intention is to compare with a given side e.g. $\sqrt{ }\left[(12 \cdot 8)^{2}+(22 \cdot 7)^{2}\right]$ with $25 \cdot 6$

A1 C.A.O. but allow evaluated answers to be given to the nearest whole number. e.g. 655 WITH 679.

A1 Allow FT if M1 awarded.
If all marks gained ISW.
S1 i.e. In order to find the value of either the same angle OR two different angles, whilst sufficient to show that it isn't a right-angled triangle.

1 CAO
CAO

Ratio	Opp	Adj	Hyp	Angle
Sin	12.8		25.6	$30\left({ }^{\circ}\right)$
Cos		22.7	25.6	$27.5 \ldots\left(^{\circ}\right)$
Tan	12.8	22.7		$29.4 \ldots\left(^{\circ}\right)$
Sin	22.7		25.6	$62.46 \ldots\left(^{\circ}\right)$
Cos		12.8	25.6	$60\left({ }^{\circ}\right)$
Tan	22.7	12.8		$60.58 \ldots\left({ }^{\circ}\right)$

A1 If comparing the sum of two angles (with 90°), the sum must be shown.
Allow FT if M1 awarded.
If all marks gained ISW.
NOTE The cosine rule is not on the intermediate tier specification, but as it is a common question, it may be seen by Higher tier candidates.
M2 M1 for $25.6^{2}=12.8^{2}+22.7^{2}-2 \times 12.8 \times 22.7 \times \cos A$

If all marks gained ISW.

B0 if all four original numbers used.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
13. (number of females in Porth \(=\frac{90}{360} \times 128\) \\
OR (number of males in Porth \(=\)) \(\frac{120}{360} \times 72\) \\
(number of females in Porth =) 32 (number of males in Porth =) 24 \\
(Probability from Porth \(=) \frac{56}{200}\) or equivalent ISW
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Or equivalent \\
Answers may be seen on the diagram. \\
An answer of 32 implies M1. \\
An answer of 24 implies M1. \\
FT ('their 32' + 'their 24') /200 provided M1 gained. \\
Penalise incorrect notation -1. e.g. '56 in 200'.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 14. } \sin (Q P R)=\frac{9 \cdot 6}{16 \cdot 7} \\
\& (Q P R=) \sin ^{-1}(9.6 / 16 \cdot 7) \text { or } \sin ^{-1}(0 \cdot 57 . .) \\
\& =35 \cdot 1\left(^{\circ}\right) \text { or } 35 \cdot 09\left(^{\circ}\right) \text { or } 35 \cdot 089\left(.^{\circ}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
m1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Implies M1. \\
Allow any answer that rounds to \(35\left(^{\circ}\right.\))
\end{tabular} \\
\hline 14.Alternative method. Correct use of 'two-step' method. \((x)=35 \cdot 1\left(^{\circ}\right)\) or \(35.09\left({ }^{\circ}\right)\) or \(35.089\left(.^{\circ}\right)\) \& \[
\begin{aligned}
\& \text { M2 } \\
\& \text { A1 } \\
\& \hline
\end{aligned}
\] \& A partial trigonometric method is M0. Allow any answer that rounds to \(35\left(^{\circ}\right)\) \\
\hline \begin{tabular}{l}
15. \(7 x+2 y=(£) 41.5(0) \quad\) AND
\[
4 x+3 y=(£) 29.75
\] \\
Method to eliminate variable \\
(Attempt at equal coefficients and subtraction) \\
First variable found \(x=(£) 5\) or \(y=(£) 3.25\). Substitute to find the \(2^{\text {nd }}\) variable. Second variable found.
\end{tabular} \& B1

M1

A1
m1

A1 \& | Allow use of other letters to denote variables. |
| :--- |
| B0 for using 4150 and 2975. |
| FT 'their equations' if of equal difficulty. Allow 1 error in one term, not one with equal coefficients. |
| C.A.O. (for their equations if FT.) |
| F.T. their ' $1^{\text {st }}$ variable'. |
| FT answers should be given to the nearest penny (rounded or truncated). |
| If M0, award SC2 (with possible B1) for both answers of ($£$) 5 AND ($£$)3.25. |

\hline | 16. |
| :--- |
| One correct evaluation $1 \leq x \leq 2$ |
| 2 correct evaluations $1.55 \leq x \leq 1.75$, one <0, one >0. |
| 2 correct evaluations $1.55 \leq x \leq 1.65$, one <0, one >0. $x=1.6$ | \& B1

B1
M1

A1 \& Correct evaluation regarded as enough to identify if 'too high' or 'too low'. If evaluations not seen accept 'too high' or 'too low'.

\hline \[
$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
85 \% \equiv 6154 \\
\frac{6154}{85} \times 100 \text { OR } \frac{6154}{0 \cdot 85}=7240
\end{array} \\
&
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 A1 | \& Accept any indication. Implies the B1.

\hline | 18. $x=54\left(^{\circ}\right)$ |
| :--- |
| Opposite angles (of a) cyclic quad. (add up to 180°). $y=108\left({ }^{\circ}\right)$ |
| Angle at the centre (is twice the angle at the circumference). | \& | B1 |
| :--- |
| E1 |
| B1 |
| E1 | \& | Dependent on an attempt at 180-126. |
| :--- |
| FT $2 \times$ 'their 54 ' only if less than 360° Dependent on an attempt at $2 \times$ 'their 54 '. |

\hline
\end{tabular}

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - UNIT 1 (HIGHER TIER)
3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS
SUMMER 2019 MARK SCHEME

GCSE MATHEMATICS Unit 1: Higher Tier	Mark	Comments
1.(a) For a method that produces 2 prime factors from the set $\{3,3,5,7\}$ before the $2^{\text {nd }}$ error. $\begin{aligned} & 3,3,5,7 \\ & 3^{2} \times 5 \times 7 \end{aligned}$	M1 A1 B1	C.A.O. For sight of the four correct factors (Ignore 1s) FT 'their primes' provided at least one index form used with at least a square. Allow (3^{2})(5)(7) and 3^{2}.5.7 Inclusion of 1 as a factor gets BO.
1.(b) $42=2 \times 3 \times 7$ or equivalent correct strategy. $(\mathrm{HCF}=) \quad 21$	M1 A1	M1 for sight of 2, 3, 7 'together'. (Not for $2 \times 21,3 \times 14$ and 6×7.) (Not for just listing all factors $1,2,3,6,7,14,21$.) M1A0 for 3×7. FT 'their answer to 1(a)' only if of equivalent difficulty (at least two common prime factors).
2. -13 Scale on y-axis ' 2 cm square $\equiv 10$ units'. At least 7 correct plots and no incorrect plots. A smooth curve drawn through their plots.	B1 B1 P1 C1	FT 'their ($-2,-13$)' AND 'their uniform scale' if possible. Allow $\pm 1 / 2$ a small square'. FT 'their 8 plots'. (Only if an uniform scale used.) OR a curve through the 7 given plots and $(-2,-13)$. Allow intention to pass through their plots (within 1 small square, either horizontally or vertically of the point).

3. $\begin{aligned} & \text { (Angle AÔB or exterior angle }=\text {) } \frac{360}{8}\left({ }^{\circ}\right) \\ & \\ & =45\left({ }^{\circ}\right) \\ & \qquad\left(\mathrm{OÂB}=\frac{180-45}{2}\right. \\ & \end{aligned}$	M1 A1 M1 A1	Answers/working may be seen on diagram. Sight of 45 (even e.g. $\mathrm{OA} B=45$) gains M1A1. FT 'their 45^{\prime} (but not 60°).
$\begin{aligned} & \text { (Sum of interior angles } \begin{array}{r} (8-2) \times 180^{\circ} \text { or equivalent } \\ \text { = } 1080\left({ }^{\circ}\right) \end{array} \\ & \qquad(O \hat{A} B=) 1 / 2 \times(1080 \div 8) \end{aligned}$	M1 A1 M1 A1	(Interior angle =) 135(${ }^{\circ}$) implies M1A1 FT 'their interior angle sum' ($\neq 1440$)
$\begin{aligned} & \text { 3. Alternative method 2 } \\ & \text { (Using } 16 \text { right-angled triangles) } \\ & \text { (Angle at } O=360 / 16=22 \cdot 5\left({ }^{\circ}\right) \\ & \qquad\left(O A \hat{A}=180-90-22 \cdot 5=67 \cdot 5\left({ }^{\circ}\right)\right. \end{aligned}$	$\begin{aligned} & M 1 \\ & A 1 \\ & M 1 \\ & A 1 \\ & \hline \end{aligned}$	FT 'their 22.5'.
Organisation and Communication. Accuracy of writing.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc

4. Correct construction method for perpendicular bisector with line drawn. Correct construction method for 60° at point A. Correct construction method for bisecting an angle with line drawn. Point P clearly identified	B1 B1 B1 B1	Correct construction arcs must be seen for the first three B1 marks. Two pairs of intersecting arcs (centres at A and B). Allow if drawn at point B. Allow B1 for correct method (tolerance will be penalised with final B0). FT 'their angle of 60° ' drawn at point A or point B. C.A.O. within tolerance. Intersecting lines alone with no indication that this is point P is not sufficient for this B1. Do not penalise if both possible positions shown. Final B1 may be awarded after B0B0B0.
4. Alternative method Correct construction method for 60° at point A (or B). Correct construction method for bisecting the angle at A (or B) with line drawn. Repeating the above two stages at B (or A) Point P clearly identified	$B 1$ $B 1$ $B 1$ $B 1$	Correct construction arcs must be seen for the first three B1 marks Allow B1 for correct method (tolerance will be penalised with final B0). C.A.O. within tolerance. Intersecting lines alone with no indication that this is point P is not sufficient for this B1. Do not penalise if both possible positions shown. Final B1 may be awarded after B0B0B0.
5. Sight of any TWO of 30,2 or $0 \cdot 5$ OR Sight of any TWO of 30,8 or $0 \cdot 5$ as appropriate approximations. $\frac{30 \times 8}{0.5}$ or equivalent.	B1	Allow $30 \cdot 2$ for 30 . Equivalent e.g. $\frac{30 \times 2 \times 2 \times 2}{1 / 2}$ or $\frac{30 \times 2^{3}}{0.5}$ Must be seen, but allow if attempted calculation done in steps. MO for exact calculation. C.A.O. Allow $483 \cdot 2$ if $30 \cdot 2$ used.
6.(a) 0.32	B1	
$\begin{array}{r} \text { 6.(b) Sample number from Anglesey on } 2^{\text {nd }} \text { day } \\ =3000 \times 0.42=1260 \\ \begin{aligned} \text { (Rel.Fqu. for two days }=) \frac{640+1260}{2000+3000} & =0.38 \end{aligned} \end{array}$	M1 A1 M1 A1	Allow M1A1 for sight of 1260 e.g. 1260/3000 FT 'their 1260'.
6.(c) 'Answer to part (b)' noted AND Valid explanation e.g. 'more people sampled'	E1	Explanation must refer to the sample being the largest. Allow e.g 'from both days', 'number of people added', 'frequencies are added'. Do not accept 'relative frequencies are added'.

7.(a)(i) $\quad 425 \mathrm{~kg}$	B1	
7.(a)(ii) 21.5 s	B1	
7.(a)(iii) 83 people	B1	
7.(b) 2.38×10^{-2}	B2	B1 for sight of a correct answer but not in standard form $\text { e.g. } 23.8 \times 10^{-3} \text { or } 0.0238 \text {. }$
	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \end{aligned}$	Allow M1A1 if $0 \cdot 8$ seen on one of the 'sees show' branches. FT 'their $0 \cdot 8$ ' only if M1 awarded. ($0.24,0.76,0.24,0.76$ is MOAOAO)
$\text { 8.(b) } 0.7 \times 0.2=0.14 \quad \text { ISW }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	FT 'their values' if both between 0 and 1 .
9.(a) $5 \mathrm{n}<3 \mathrm{n}+7$ or equivalent ISW	B2	$2 \mathrm{n}<7$ OR $\mathrm{n}<7 / 2$ implies B2. Ignore use of a different letter e.g. $5 x<3 x+7$. Use of ' \leq ' is B 1 . B1 for sight of $3 n+7$ in an inequality.
9.(b) \quad2 n <7 OR $\mathrm{n}<7 / 2$ $($ Greatest amount $=) \quad(£) 3$	B1 B1	FT 'their inequality' if of equivalent difficulty. May be seen in part (a). FT 'their $\mathrm{n}<\mathrm{k}$ '. BO if they have ' $\mathrm{n}>\mathrm{k}$ '. $B 0$ if it leads to $\mathrm{n}<1$. An answer of ($£$) 3 gains B1B1 (unless from incorrect algebra work).
10. Lines $x=-2, y+x=1$ and $2 y=x$ all correct. Correct region identified.	B2	B1 for any 2 correct lines. If $x=-2$ and any other vertical or horizontal line shown e.g. $y= \pm 2$ or $x=2$, do not award a mark unless $x=-2$ is selected for the region or clearly labelled. FT provided region is closed and B1 awarded. Accept indication by 'shading out'.
11. $\begin{array}{llll} \quad c x-4 x=d+3 & \text { or } & -3-d=4 x-c x \\ x(c-4)=d+3 & \text { or } & -3-d=x(4-c) \\ x=(d+3) /(c-4) & \text { or } & & x=(-3-d) /(4-c) \end{array}$ or equivalent	B1 B1 B1	FT until $2^{\text {nd }}$ error provided equivalent difficulty. Collecting x terms. Factorising. Dividing. Mark final answer.
12. Values given for any two missing angles. Explanation that the triangles are congruent due to angle, side, angle or ASA or equivalent.	B1	(Check diagrams) Missing angle(s) is/are 32° or 83° and 65° If all three angles are given, they must all be correct. Or equivalent. No FT from incorrect angles. Dependent on at least one correct angle found.
13. (a) $x=0.2488888 \ldots \ldots . \quad 10 x=2.488888 \ldots \ldots$ with an attempt to subtract $224 / 900$ or $112 / 450$ or $56 / 225$ or equivalent e.g. 2464/9900	M1 A1	Or 1000x and 100x, or equivalent. An answer of 2•24/9 or 22•4/90 gains M1 only. ISW.
$\begin{aligned} & \text { Alternative method } \\ & \begin{array}{l} (0 \cdot 24+0.00888 .=) \\ 224 / 900 \\ 24 / 100+56 / 225) \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	ISW
13. (b) 9	B2	B1 for $729^{\frac{1}{3}}$ or $3^{\sqrt{2}} 729$ or $(729 / 1)^{\frac{1}{3}}$ or 3^{2} or $(1 / 9)^{-1}$ or 1/(1/9) Allow B1 for $1 / 9$ or -9 .

\begin{tabular}{|c|c|c|}
\hline 18. (a) \(4 / 10 \times 3 / 9 \times 6 / 8\) or equivalent \(72 / 720(=1 / 10)\) or equivalent \& M1
A1 \& \[
\begin{array}{|l|}
\hline \text { Accept e.g. } \\
6 / 10 \times 4 / 9 \times 3 / 8 \text { or }(6 \times 4 \times 3) /(10 \times 9 \times 8) \\
\text { ISW } \\
\hline
\end{array}
\] \\
\hline \[
\text { 18. (b) } \begin{aligned}
\&1-\mathrm{P}(\text { three red }) \text { or } 1-\mathrm{P} \text { (no yellow }) \\
\&=1-[6 / 10 \times 5 / 9 \times 4 / 8] \\
\&(=1-120 / 720 \text { or } 1-1 / 6) \\
\&=600 / 720(=5 / 6) \text { or equivalent }
\end{aligned}
\] \& \begin{tabular}{l}
S1
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
May be implied by subsequent working. Complete method. \\
ISW \\
FT from part (a) consistent use of a wrongly calculated denominator. \\
If no other marks awarded, SC1 for sight of 784/1000 or equivalent (from a method 'with replacement')
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method \\
P(YRR or RYR or RRY or YYR or YRY or RYY or YYY) or equivalent (allow up to two of these terms to be missing or incorrect for this mark) \\
\(=4 / 10 \times 6 / 9 \times 5 / 8 \times 3+4 / 10 \times 3 / 9 \times 6 / 8 \times 3+\) \\
\(4 / 10 \times 3 / 9 \times 2 / 8\) or equivalent \\
(complete method required for this mark) \\
= 600/720 (= 5/6) or equivalent ISW
\end{tabular} \& S1
M1

A1 \& $$
\begin{aligned}
& \text { FT } 4 / 10 \times 6 / 9 \times 5 / 8 \times 3+\text { 'their part }(a) \times 3+ \\
& 4 / 10 \times 3 / 9 \times 2 / 8
\end{aligned}
$$

\hline 19. (a) $\frac{a}{x(x-a)}$ or $\frac{a}{x^{2}-a x}$ \& B2 \& | B1 for correct numerator - not from incorrect work use of brackets may be implied. |
| :--- |
| B1 for correct denominator in a single fraction (accept equivalent) |
| If B2, penalise -1 for incorrect subsequent work |

\hline | 19. (b) $x-1+2 x(4 x+3)[=0]$ |
| :--- |
| or $\quad x-1+8 x^{2}+6 x[=0]$ |
| or $\quad x-1=-2 x(4 x+3)$ |
| $8 x^{2}+7 x-1[=0]$ |
| $(8 x-1)(x+1)[=0]$ |
| $x=\frac{1}{8}$ or $x=-1$ | \& M1

A1
B2

B1 \& | Clearing fraction |
| :--- |
| Allow e. g. $\frac{x-1+2 x(4 x+3)}{x(4 x+3)}=0$ |
| Allow M1 for $x-1=2 x(4 x+3)$ |
| Collecting terms and re-arranging quadratic equation Ignore presence of denominator (provided correct). |
| B1 for $(8 x \ldots .1)(x \ldots 1)$ |
| FT their quadratic equation, provided of equivalent difficulty. |
| Both answers required. Strict FT 'their derived brackets'. |
| Using quadratic formula FT their quadratic equation, provided of equivalent difficulty. $\begin{equation*} (x=) \frac{-7 \pm \sqrt{ }\left[7^{2}-4(8)(-1)\right]}{2(8)} \tag{M1} \end{equation*}$ |
| For M1, allow one error, in sign or substitution, but not in formula. $\begin{aligned} & x=\frac{-7 \pm \sqrt{ } 81}{16} \\ & x=\frac{1}{8} \text { or } x=-1 \quad \text { (both answers required) A1 } \end{aligned}$ |
| No marks for a trial and improvement method. |

\hline
\end{tabular}

GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - UNIT 2 (HIGHER TIER)
3300U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2019 MARK SCHEME

| GCSE MATHEMATICS
 Unit 2 : Higher Tier | Mark | Comments |
| :--- | :---: | :---: | :--- |

2. Intent to square at least two of the three values.

Comparing $(25 \cdot 6)^{2}$ with $(12 \cdot 8)^{2}+(22 \cdot 7)^{2}$ or
Any intent to compare any other relevant values.
(e.g. $(25 \cdot 6)^{2}-(22 \cdot 7)^{2}$ with $(12 \cdot 8)^{2}$ or $\sqrt{\left.\left[(12 \cdot 8)^{2}+(22 \cdot 7)^{2}\right](\text { with } 25 \cdot 6) ~\right) ~}$

Correct evaluation of value(s) to be compared.
(e.g 'sight of 655.36 WITH 679.13' or
'sight of 140.07 WITH 163.84' or
'sight of 26.06 (WITH 25.6)')
Statement that it is NOT possible
2. Alternative method 1

Intent to use two right-angled trig ratios using 2
different pairs of given sides

Correct right-angled trig ratio used twice, using 2
different given sides, in order to compare

- the values of the same angle or
- the sum of the two angles with 90°.

Correct evaluation of value(s) to be compared. e.g. sight of any two of $30\left({ }^{\circ}\right), 27.5 \ldots\left({ }^{\circ}\right)$ and $29.4 \ldots\left({ }^{\circ}\right)$ OR sight of $30\left({ }^{\circ}\right)$ and $60.58 \ldots\left(^{\circ}\right.$) (and the sum to be compared with 90°)

Statement that it is NOT possible
2. Alternative method 2 (using the cosine rule)
$(\cos A=)\left(12.8^{2}+22.7^{2}-25.6^{2}\right) /(2 \times 12.8 \times 22.7)$

$$
(=2377 / 58112 \text { or } 0 \cdot 0409 . .)
$$

$$
(A=) 87\left(.6557 \ldots{ }^{\circ}\right)
$$

Statement that it is NOT possible

S1 (Note:
$12 \cdot 8^{2}=163 \cdot 84,22 \cdot 7^{2}=515 \cdot 29$ and $25 \cdot 6^{2}=655 \cdot 36$)
M1 The comparison attempted must show both intended calculations e.g. $(25 \cdot 6)^{2}$ AND $(12 \cdot 8)^{2}+(22 \cdot 7)^{2}$ unless intention is to compare with a given side e.g. $\sqrt{ }\left[(12 \cdot 8)^{2}+(22 \cdot 7)^{2}\right]$ with $25 \cdot 6$

A1 C.A.O. but allow evaluated answers to be given to the nearest whole number. e.g. 655 WITH 679.

A1 Allow FT if M1 awarded.
If all marks gained ISW.
i.e. In order to find the value of either the same angle OR two different angles, whilst sufficient to show that it isn't a right-angled triangle.

CAO

Ratio	Opp	Adj	Hyp	Angle
Sin	12.8		25.6	$30\left({ }^{\circ}\right)$
Cos		22.7	25.6	$27.5 \ldots\left({ }^{\circ}\right)$
Tan	12.8	22.7		$29.4 \ldots\left({ }^{\circ}\right)$
Sin	22.7		25.6	$62.46 \ldots\left({ }^{\circ}\right)$
Cos		12.8	25.6	$60\left({ }^{\circ}\right)$
Tan	22.7	12.8		$60.58 \ldots\left({ }^{\circ}\right)$

A1 If comparing the sum of two angles (with 90°), the sum must be shown.
Allow FT if M1 awarded.
If all marks gained ISW.
NOTE The cosine rule is not on the intermediate tier specification, but as it is a common question, it may be seen by Higher tier candidates.

M2 M1 for $25.6^{2}=12.8^{2}+22.7^{2}-2 \times 12.8 \times 22.7 \times \cos A$

If all marks gained ISW.

Organisation and Communication Accuracy of writing.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc
3.(a) $A \cap B$	B1	
3.(b) $B^{\text {l }}$	B1	
4 Four numbers with a range of 10. Four numbers with a total of 36. Four numbers with a median of 8. Possible answers for all three marks are $5,5,11,15$ or $5,6,10,15$ or $5,7,9,15$ or $5,8,8,15$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	B0 if all four original numbers used.
	M1 A1 A1 A1	Or equivalent Answers may be seen on the diagram. An answer of 32 implies M1. An answer of 24 implies M1. FT ('their 32' + 'their 24 ') /200 provided M1 gained. Penalise incorrect notation -1. e.g. ' 56 in 200 '.
$\begin{aligned} & \text { 6. } \sin (Q P R)=\frac{9 \cdot 6}{16 \cdot 7} \\ & (\text { QPR }=) \sin ^{-1}(9.6 / 16 \cdot 7) \text { or } \sin ^{-1}(0 \cdot 57 . .) \\ & \left.=35 \cdot 10^{\circ}\right) \text { or } 35 \cdot 090^{\circ} \text {) or } 35 \cdot 089\left(\ldots .^{\circ}\right) \end{aligned}$	M1 m1 A1	Implies M1. Allow any answer that rounds to $35\left({ }^{\circ}\right)$
6.Alternative method. Correct use of 'two-step' method. $(x)=35 \cdot 1\left(^{\circ}\right)$ or $35.09\left(^{\circ}\right)$ or $35.089\left(.^{\circ}\right)$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \hline \end{aligned}$	A partial trigonometric method is M0. Allow any answer that rounds to $35\left({ }^{\circ}\right)$
7. $7 x+2 y=(£) 41.5(0) \quad$ AND $4 x+3 y=(£) 29.75$ Method to eliminate variable (Attempt at equal coefficients and subtraction) First variable found $x=(£) 5$ or $y=(£) 3.25$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found.	B1 M1 A1 m1 A1	Allow use of other letters to denote variables. B0 for using 4150 and 2975. FT 'their equations' if of equal difficulty. Allow 1 error in one term, not one with equal coefficients. C.A.O. (for their equations if FT.) F.T. their ' 1 st v variable'. FT answers should be given to the nearest penny (rounded or truncated). If M0, award SC2 (with possible B1) for both answers of (£) 5 AND ($£$)3.25.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
8. \\
One correct evaluation \(1 \leq x \leq 2\) 2 correct evaluations \(1 \cdot 55 \leq x \leq 1 \cdot 75\), one \(<0\), one \(>0\). \\
2 correct evaluations \(1 \cdot 55 \leq x \leq 1 \cdot 65\), one \(<0\), one \(>0\).
\[
x=1 \cdot 6
\]
\end{tabular} \& B1
B1
M1

A1 \& Correct evaluation regarded as enough to identify if 'too high' or 'too low'. If evaluations not seen accept 'too high' or 'too low'.

\hline 9.

$$
\begin{aligned}
& 85 \% \equiv 6154 \\
& \frac{6154}{85} \times 100 \text { OR } \frac{6154}{0 \cdot 85}=7240
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
$$
\] \& Accept any indication. Implies the B1.

\hline | 10. $\quad x=54\left({ }^{\circ}\right)$ |
| :--- |
| Opposite angles (of a) cyclic quad. (add up to 180°) $y=108\left({ }^{\circ}\right)$ |
| Angle at the centre (is twice the angle at the circumference). | \& | B1 E1 |
| :--- |
| B1 |
| E1 | \& | Dependent on an attempt at $180-126$. |
| :--- |
| FT $2 \times$ 'their 54 ' only if less than 360° Dependent on an attempt at $2 \times$ 'their 54 '. |

\hline 11. Correct enlargement \& B2 \& | Otherwise B1 for 2 correct vertices within a triangle. OR for 3 correct vertices in the correct location not joined to form the triangle |
| :--- |
| OR triangle of correct shape, size and orientation in incorrect position |
| OR consistent correct use of an incorrect negative scale factor. |

\hline 12(a). $(9 p+1)(9 p-1)$ \& B2 \& B1 for ($9 p \ldots 1$)($9 p \ldots$...1)

\hline 12(b). $(7 t-2)(t+3)$ \& B2 \& B 1 for (7t ...2) (t...3)

\hline 13. Sight of 297.5 AND 6.5

$$
297.5 \div 6.5
$$

\[
=45.77(\mathrm{~km} / \mathrm{h})

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& | Accept 6 hours 30 minutes, but not 6.3 hours. If other calculations shown, then the relevant calculation must be identified. Award M1 for their values provided $295 \leq \mathrm{d}<300$ AND $6<t \leq 7$ (but not 6 hours 30 minutes). |
| :--- |
| CAO. Correct answer must be clearly identified. |

\hline 14. $\sin \operatorname{BAD}=(2 \times 70) /(8 \times 19)$ or equivalent \& M2 \& Allow any unambiguous indication of angle BAD. M1 for the correct use of the formula when sinBAD is not the subject, for example: $70=1 / 2 \times 8 \times 19 \times \sin B A D$.

\hline $(\mathrm{BAD}=) 67\left(.08 \ldots . .{ }^{\circ}\right)$ \& A1 \& Allow any answer that rounds to $67\left({ }^{\circ}\right.$).

\hline (Area of sector ABD=) $67(.08 \ldots) / 360 \times \pi \times 8^{2}$ \& M1 \& Accept 292.9(...)/360× $\pi \times 8^{2}$ OR 293/360× $\times \pi^{2}$ for the area of the major sector ABD. FT their derived or stated value of angle BAD.

\hline $$
\begin{array}{r}
\text { Accept answers in the range } 37.4\left(\mathrm{~cm}^{2}\right) \text { to } 37.5\left(\mathrm{~cm}^{2}\right) \\
O R 37\left(\mathrm{~cm}^{2}\right)
\end{array}
$$ \& A1 \& Accept an answer in the range $163.5\left(\mathrm{~cm}^{2}\right)$ to $163.7\left(\mathrm{~cm}^{2}\right)$ OR 164(cm^{2}) for the area of the major sector ABD.

\hline
\end{tabular}

15. Equation	B2	B1 for any 1 or 2 correct.
16.(a) General sine curve with appropriate orientation and position. -1 and 1 indicated on the y-axis, curve passes through $\left(-180^{\circ}, 0\right),\left(0^{\circ}, 0\right)$ and $\left(180^{\circ}, 0\right)$ and approximately $\left(-90^{\circ},-1\right)$ and $\left(90^{\circ}, 1\right)$.	M1 A1	Ignore curve shown for values $\mathrm{x}<-180^{\circ}$ or $\mathrm{x}>180^{\circ}$.
16(b). \quad-30(${ }^{\circ}$) AND -150(${ }^{\circ}$	B2	Accept embedded answers. Penalise further incorrect answer(s) -1. Ignore further answer(s) outside of the range. Award B1 for sight of an answer $-30\left({ }^{\circ}\right)$ or $-150\left({ }^{\circ}\right)$ (but not for sight of -30 as part of working).
$\text { 17.(a) } \quad \begin{aligned} \frac{3}{100} \times \frac{1}{99} & \\ & =\frac{3}{9900}\left(=\frac{1}{3300}\right) \text { ISW } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow 3(.03 ...) $\times 10^{-4}$ OR 0.0003(03 \ldots) or equivalent. A0 for 0.0003(03...)\%. An unsupported 0.000303(...) gains M1A1. An unsupported 3/10000 OR 0.0003 gains no marks.
$\text { 17(b) } \begin{aligned} & 2 \times \frac{3}{100} \times \frac{1}{99}\left(=\frac{6}{9900}=\frac{1}{1650}\right) \\ &+\frac{3}{100} \times \frac{2}{99}\left(=\frac{6}{9900}=\frac{1}{1650}\right) \\ & \text { OR } \frac{4}{100} \times \frac{3}{99} \\ &=\frac{12}{9900}\left(=\frac{1}{825}\right) \text { ISW } \end{aligned}$	M2	M1 for sight of $\left(\frac{3}{100} \times \frac{1}{99}\right)+\left(\frac{3}{100} \times \frac{1}{99}\right)$ OR $\left(\frac{3}{100} \times \frac{1}{99}\right)+\left(\frac{1}{100} \times \frac{3}{99}\right)$ OR $2 \times \frac{3}{100} \times \frac{1}{99}$ OR $\left(\frac{3}{100} \times \frac{1}{99}\right)+\left(\frac{3}{100} \times \frac{2}{99}\right)$ Allow 1(.21...) $\times 10^{-3}$ OR 0.001 (21...) or equivalent. An unsupported answer of 0.00121 (2...) gains M2A1. A0 for 0.001(21...)\%. SC1 for working with replacement leading to an answer of $12 / 10000$ (3/2500) OR 0.001(2) [may be unsupported].

\begin{tabular}{|c|c|c|}
\hline 17.(b) Alternative method
$$
\begin{array}{r}
1-\left[\left(\frac{96}{100} \times \frac{95}{99}\right)+\left(2 \times \frac{3}{100} \times \frac{96}{99}\right)+\left(2 \times \frac{1}{100} \times \frac{96}{99}\right)\right] \\
=\frac{12}{9900}\left(=\frac{1}{825}\right) \text { ISW }
\end{array}
$$ \& M2

A1 \& | M1 for sight of: |
| :--- |
| $\left[\left(\frac{96}{100} \times \frac{95}{99}\right)+\left(2 \times \frac{3}{100} \times \frac{96}{99}\right)+\left(2 \times \frac{1}{100} \times \frac{96}{99}\right)\right] O R$ $1-\left[\left(\frac{96}{100} \times \frac{95}{99}\right)+\left(\frac{3}{100} \times \frac{96}{99}\right)+\left(\frac{1}{100} \times \frac{96}{99}\right)\right]$ |
| Allow $1(.21 \ldots) \times 10^{-3}$ OR $0.001(21 \ldots)$ or equivalent. An unsupported answer of $0.00121(2 . .$.$) gains M2A1.$ AO for 0.001(21...)\%. |
| SC1 for working with replacement leading to an answer of 12/10000 (3/2500) OR 0.001(2) [may be unsupported]. |

\hline $$
\begin{gathered}
\text { 18. }(\cos \mathrm{CAB}=)\left(13^{2}+17^{2}-23^{2}\right) /(2 \times 13 \times 17) \\
(=-71 / 442 \mathrm{OR}-0.16(06 \ldots)) \\
(\mathrm{CAB}=) 99\left(.2 \ldots .^{\circ}\right)
\end{gathered}
$$ \& M2

A1 \& | M1 for $23^{2}=13^{2}+17^{2}-2 \times 13 \times 17 \times \cos C A B$ |
| :--- |
| SC1 for the correct evaluation of either of the two other angles. $A B C=33(.9 \ldots)$ and $A C B=46(.8 \ldots)$. |

\hline | 19. Sight of $9 x^{2}-6 x-6 x+4$ |
| :--- |
| Sight of $x^{2}+x+2 x+2$ $8 x^{2}-15 x+2=0$ $x=\frac{-(-15) \pm \sqrt{(-15)^{2}-4 \times 8 \times 2}}{2 \times 8}$ $x=\frac{15 \pm \sqrt{161}}{16}$ |
| $x=1.73$ with $x=0.14$ (answers to 2 dp) | \& B1

B1
B1

M1

A1

A1 \& | Or equivalent. |
| :--- |
| Or equivalent. |
| FT expansions of equivalent level of difficulty provided B1 previously awarded. |
| ' = 0 ' required, but may be implied by an attempt to use the quadratic formula or if $a=8, b=-15$, $c=2$ used in the quadratic formula. |
| This substitution into the formula must be seen for M1. |
| FT 'their derived quadratic equation' equated to zero of equivalent difficulty (a, b and c must be non-zero). Allow one slip in substitution for M1 only, but must be correct formula. |
| Can be implied from at least one correct value of x evaluated. |
| CAO for their quadratic equation but not if complex roots. |
| MOAOAO if trial and improvement used or for unsupported answers. |

\hline $$
\begin{aligned}
& \text { 20. Volume scale factor: } \\
& \begin{array}{c}
(\sqrt{199 / 47})^{3}(=8.712 \ldots) \text { OR }(\sqrt{47 / 199})^{3}(=0.114 \ldots) \\
\text { or equivalent. }
\end{array} \\
& \text { Volume of larger solid } 350 \times(\sqrt{199 / 47})^{3} \\
& \text { OR } 350 \div(\sqrt{47 / 199})^{3} \\
& \text { or equivalent. } \\
& 3049\left(.305 \ldots \mathrm{~cm}^{3}\right)
\end{aligned}
$$ \& B2

M1

A1 \& | May be seen in parts. |
| :--- |
| Award B1 for a linear scale factor: $\begin{aligned} & \sqrt{(199 / 47)}(=2.057 \ldots) \text { OR } \sqrt{(47 / 199)}(=0.485 \ldots) \\ & \text { or equivalent OR } \\ & \text { Award B1 for }(199 / 47)^{3}(=75.904 \ldots) \text { OR } \\ & (47 / 199)^{3}(=0.013 \ldots) \text {. } \end{aligned}$ |
| CAO. Not from premature approximation. |

\hline
\end{tabular}

