

SUMMER 2019

GCSE
MATHEMATICS – UNIT 1 (FOUNDATION TIER)
3300U10-1

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE MATHEMATICS	Mark	Comments
Unit 1 Foundation Tier 1(a) 4523	B1	
· ,		
1(b) 168	B1	
1(c) 1, 3, 9, 27	B2	B1 for 2 correct and 0 wrong OR B1 for 3 correct and 0 or 1 wrong OR B1 for 4 correct and 1 wrong
2(a) Evidence of counting squares 32 – 42 inclusive	M1 A1	
160 – 210 (cm²)	B1	FT 'their number of squares' × 5 evaluated correctly Award 3 marks for an unsupported answer between 160 and 210 inclusive. Mark final answer
Accuracy in writing	W1	For W1, candidates will be expected to:
2(b)	B1	
3(a) an even chance	B1	
3(b) impossible	B1	
4(a) Correctly drawn tangent	B1	
4(b) Correctly drawn radius	B1	

5(a) 481·63	B1	Do not accept 481·630
5(b) 64	B1	
5(c) 7	B1	Do not accept 7x7 or 7x7=49 alone.
5(d) (0)·03825	B1	
Ribbon mark 6(a),(b),(c),(d) 6(a) Football	B1	
Ribbon mark 6(a),(b),(c),(d) 6(b) 1/4 or equivalent ISW	B1	Do not accept incorrect notation; e.g. 1 in 4,1 out of 4, 1:4.
Ribbon mark 6(a),(b),(c),(d) 6(c) 1/4 × 60 15	M1 A1	Accept 15 out of 60. Award SC1 only, for a final answer of 15/60
Ribbon mark 6(a),(b),(c),(d) 6(d) Correctly labelled axes. Uniform scale starting from zero. Correct equal width bars for football, swimming and tennis.	B1 B1 B1	Vertical axis labelled 'number (of people)' or 'people' or 'frequency' AND horizontal axis marked with the sports. Correct heights for 'their scale' (30 and 15) FT their (c) if possible: 'their swimming' = 'their tennis' AND either 'their football' = 2 x 'their tennis' or 'their football' = 60 – 2 x 'their tennis'. If no scale visible, allow final B1 for bars drawn in correct proportions.
7.(Number across = 20÷4=) 5 OR (Number down = 6÷2 =) 3 (Total number of small rectangles =) 5 × 3	B1 M1 A1	Sight of 5 or 3, not in incorrect statement or working FT 'their stated across and down' CAO
7. <u>Alternative method</u> (Area rectangle A=2×4=) 8 (cm²) OR (Area rectangle B=6×20=) 120 (cm²) (No. of rectangle A=) 120 ÷ 8	B1 M1 A1	Sight of 8 or 120, not in incorrect statement or working FT 'their stated areas' CAO
Organisation and Communication	OC1	For OC1, candidates will be expected to:

8(a) 5 <i>p</i>	B1	
8(b) (i) (x =) 8	B1	Accept embedded answer
8(b) (ii) (y =) 15	B1	Accept embedded answer
8(c) 19	B1	Accept 4 x 19 (= 76) or 19 x 4 (= 76)
9. \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	В3	For all 5 correct B2 for 4 correct. B1 for 3 correct
10.(a) Type Yellow Blue	B2	For all three correct. B1 for 1 or 2 correct. If no marks awarded allow B1 for all correct tallies seen.
10.(b) Any valid statement that indicates that the numbers (in the table) are added (to make 25) e.g. 'add the frequency'.	E1	Allow 'add them up'. Allow sight of '8 + 7 + 4 + 6 (= 25).'
10.(c) <u>8</u> or equivalent ISW 25	B2	B1 for x/25 with x<25. B1 for 8/y with y >8. Penalise incorrect notation -1; e.g. '8 out of 25', 8:25, '8 in 25'.
11.(a) -3 1	B1 B1	OR FT 'their −3' + 4.
11.(b)(i) 21	B1	
11.(b)(ii) 191	B1	
11.(c) Divide (the previous number) by 3.	E1	Allow '÷3'. Do not accept n÷3.

40 (-)	D.4	DO if we will be all the control of
12.(a) Any correct total of 2 . e.g. 3 + 3 + 3 - 7	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or – used. e.g. 3 × 3 is not acceptable for 3 + 3 + 3. Allow multi-digit numbers made from 3 or/and 7. e.g. 33, 37, 373 etc.
12.(b) Any correct total of 8 . e.g. 7 - 3 + 7 - 3	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or – used. e.g. 2 × 7 is not acceptable for 7 + 7. Allow multi-digit numbers made from 3 or/and 7. e.g. 33, 37, 373 etc.
12.(c) Any correct total of 19 . e.g. 3 + 3 + 3 + 7	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or – used. e.g. 4 × 3 is not acceptable for 3 + 3 + 3 + 3. Allow multi-digit numbers made from 3 or/and 7. e.g. 33, 37, 373 etc.
13. E A B 12 15 15 15 15 15 15 15 15 15 15 15 15 15	B1	Allow intent of drawing circles and a rectangle. Two intersecting circles AND labelled A and B AND within a rectangle. Allow missing 'E' symbol. For unambiguous indication that the set B consists of
10 20 16 17 19	B2	12, 15 and 18 only. B0 if any of these numbers are repeated outside B. All eleven numbers in correct position (with or without
	DZ.	a rectangle), with no other or repeated numbers.
		B1 for six to ten numbers in correct position. Repeated numbers should not be credited. Other numbers may be ignored for this B1 mark.
14.(a)(i) (x =) 147	B1	Accept embedded answer. Mark final answer.
14.(a)(ii) 13f - 6f = 5 - 2 7f = 3 (f =) 3/7	B1 B1 B1	F.T. until 2 nd error. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. Mark final answer. Allow 0·43 or 0·428 as a final answer.
14.(b) '5n – 3 can be even or odd' ticked or implied AND a valid explanation given.	E1	A valid explanation implies '5n – 3 can be even or odd', unless contradicted.
e.g. '5×3 – 3 = 12 (even) and 5×4 – 3 = 17 (odd)' 'if n is odd you get even (but) if n is even you get odd'		Allow e.g. '15 – 3 = 12, 20 – 3 = 17'. Allow a correct sequence shown e.g. 2, 7, 12,
		Do <u>not</u> accept 'n can be anything', 'n can be odd or even'. Do <u>not</u> accept an explanation that only uses 5n. e.g. '5 × 2 = 10 (even), $5 \times 3 = 15$ (odd)'

15.	1	Longtha may be about an the diagram
(Area of the triangle CDE =) $14 = \frac{4 \times CE}{2}$	M1	Lengths may be shown on the diagram. Accept equivalent e.g. 28 = 4 × CE.
(CE =) 7 (cm)	A1	
(Area ABCE = 7 × 7 =) 49 (cm ²)	B1	FT 'their stated or shown length CE'.
(Area of whole shape = 49 + 14 =) 63 (cm ²)	B1	The their stated or shown length GE.
		FT 'their stated or shown area of square' + 14.
15. <u>Alternative method</u> (Area of the triangle CDE =) 14 = <u>4 × CE</u> 2	M1	Lengths may be shown on the diagram.
(CE =) 7 (cm)	A1	
(Area Trapezium ABCD =)	M1	FT 'their stated or shown length CE (=CB)' consistently as 'their 7'.
$= 63 \left(cm^2 \right)^2$	A1	<u>consistently</u> as their r.
16. (a =) <u>180 – 110</u> or equivalent.	M1	
= 35(°)	A1	
b (= 180 – 90 – 35) = 55(°)	B1	OR FT 90 - 'their a'.
c (= 90 + 55) 145(°) OR c (= 180 - 35) 145(°)	B1	OR FT 90 + 'their b'. OR FT 180 – 'their a'

SUMMER 2019

GCSE
MATHEMATICS – UNIT 2 (FOUNDATION TIER)
3300U20-1

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC GCSE MATHEMATICS (NEW)

GCSE	MATHEMATICS		• .
	Foundation Tier	Mark	Comments
1.	(£)4.67	B1	
	(£)5.84	B1	
	(£)7.08	B1	
	(£)1.45	B1	
2.(a)	Pentagon	B1	
2.(b)	Rhombus	B1	Allow equilateral kite, but not kite or parallelogram.
2.(c)	Cylinder	B1	Allow circular prism.
3.(a)	(47,) 94, 141	B1	Ignore additional multiples.
3.(b)	52	B1	
3.(c)	209	B1	Alland
4.(a)	Midpoint unambiguously indicated	B1	Allow +/- 2 mm.
4.(b)	Unambiguous parallel line drawn through C	B1 B2	Allow +/- 2°.
5.(a)	9 (and) 16	BZ	Allow 3 ² (and) 4 ² .
			B1 for a sum of two square numbers less than 30 seen in workings or two square numbers less than
			30 written on the answer line.
5.(b)	Accept suitable explanations, e.g.	E1	Allow • even + even = even,
0.(5)	the sum of three even numbers will be		• because 23 is odd.
	even (and 23 is odd)		20 to 544.
•	when you add any amount of even		
	numbers the answer is always even (whilst		
	23 is odd).		
•	(23 is odd, but) even + even + even = even		
6.	FALSE	B2	For all four correct.
	TRUE		B1 for 3 correct.
	FALSE		
	TRUE		
7.(a)	60 (%)	B2	B1 for equivalent fraction or decimal (0.6, 3/5,
			12/20).
			If B2 not awarded, F.T. their fraction (except for ½,
			1/4 and 3/4) correctly converted to a percentage for
7.(b)	Multiply by 4	E1	B1. Accept other correct explanations e.g. divide (the
/ .(U)	ividitiply by 4		number) by 5 then multiply by 20, double (the
			number) and double (it) again or divide by $\frac{1}{4}$.
7.(c)	Accept suitable explanations, e.g.	E1	Award E1 for other correct explanations e.g. a
7.(0)	0.125 (is greater than) 0.1	'	larger denominator means each part of the whole is
	5/40 (is greater than) 4/40		smaller, or for correct evaluation of 1/8 and 1/10 of
	or to the greater than I that		a chosen number.
8.(a)	65 (°)	B1	Allow ±2 0
8.(b)	225°	B1	
8.(c)		-	Check diagram, though answer space takes
-/(-/			precedence.
	(Small angle = 180 ÷ 6 =) 30(°)	B1	
	(Large angle = 5 × Small angle =) 150 (°)	B1	F.T. 'their small angle' × 5 or 180 - 'their small
	(99 5		angle ', provided answer is less than 180°.
			If no marks awarded, award B1 for both correct
			angles given in reverse.

0		
9. Length of sides in Cuboid B = 5 (cm), 3(cm), 6 (cm)	B1	Award B1 for (height =) 6 (cm), provided length and width aren't also multiplied by 3.
Volume of Cuboid B = $5 \times 3 \times 6$ = $90 \text{ (cm}^3\text{)}$	M1 A1	F.T. 'their height' x 5 x 3
Alternative method		
(Volume of Cuboid A =) 5 x 3 x 2	M1	
$= 30 (cm^3)$	A1	
(Volume of Cuboid B =) 90 (cm ³)	B1	F.T. for their stated or derived volume for Cuboid A'
Organisation and Communication.	OC1	For OC1, candidates will be expected to:
Accuracy of writing.	W1	For W1, candidates will be expected to:
10.(a)(i) Subtract six (from the previous term)	B1	Accept 'take away 6' or '(goes) down in 6s'. Allow -6. B0 for n-6
10.(a)(ii) Double (the previous term)	B1	Accept 'multiply by 2' or 'times by 2'. Allow ×2. B0 for n×2
10.(b)(i) x + 3	B1	Mark final answer.
10.(b)(ii) (£)15g	B1	Mark final answer. Accept 15 × g
11.(a) 28·34 or 1417/50 or 28 ¹⁷ / ₅₀ ISW	B2	B1 for sight of 23·04 OR sight of 5·3. If B0 allow SC1 for 28 or 28·3
11.(b) 34·8 or 174/5 or 34 ⁴ / ₅ ISW	B1	
12.(a) (19 – 18·2 =) 0·8	B2	B1 for sight of 19 OR sight of -18·2. BUT B0 for 19f - 18·2g. Mark final answer.
12.(b) $7x = 16$ (x =) 16/7 (x =) 2.3 (to 1dp)	B1 B1 B1	FT from 7x = k. Allow 16 ÷ 7 FT from any fraction that requires rounding. Mark final answer. (x =) 2·2 implies B1B1B0. Allow an embedded 2·3, B1B1B0
13.(a) 4 hours 45 min	B1	
13.(b) 2·4 km	B1	
13.(c) 7km less than 5 miles TRUE 1kg less than 2lb FALSE 1 litre less than 1 pint FALSE 8 litres less than 900cm³ FALSE	B2	For all 4 correct. B1 for 3 correct.

14. Two relevant (sides of one double the other) rectangles or squares considered.	M1	Sketch shown or lengths stated. If M0, only the B marks are available.
Perimeter AND area of 1 st rectangle correctly calculated.	B1	Ignore missing units BUT penalise −1, once only, for incorrect units. (Applies to these B1 marks.)
Perimeter AND area of 2 nd rectangle correctly calculated.	B1	
Clear statement that the perimeter has been doubled but the area has not been doubled	A2	FT 'their <u>stated</u> values' for both perimeter and area.
(and that Catrin is incorrect.)		If not A2, then A1 for correct perimeter statement for 'their values'. OR
		A1 for correct area statement for 'their values'. Accept statement that area is 4 times as big.
		Allow for A2 'only the perimeter has been doubled'. (implies that the area has not been doubled.)
		Also for A2. 'The area is not doubled so Catrin is incorrect' answers the question. In this case
		Award SC1 and SC1 (instead of B1 and B1) if areas correctly calculated.
		Correct statements, for BOTH perimeter and area, with no supporting work gains SC1.
15. $(18\% \text{ of } £256 =) 0.18 \times 256 = (£)46.08$	M1 A1	Allow (£)46.10
(Larger share =) 2×46.08	M1	FT 'their stated 18%'.
= (£)30.72	A1	If M0 allow SC1 for sight of (£)15.36
(To the nearest 10p =) (£)30.7(0)	B1	FT 'their larger share' (not 'their 18%') and only if rounding required.
15. <u>Alternative method 1</u> (Larger share of £256 =) 2 × 256	M1	
(Larger share of £256 =) 2 × 256 3 =(£)170.66()	A1	Allow (£)170.70 If M0 allow SC1 for sight of (£)85.33.
(18% of £170.66 =) 0.18×170.66 = (£)30.72	M1 A1	FT 'their stated larger share'.
(To the nearest 10p =) (£)30.7(0)	B1	FT 'their 18%' (not 'their larger share') and only if rounding required.
15. Alternative method 2	M1	
(Larger share of 18% =) $\frac{2 \times 18}{3}$		If MO allow SC1 for sight of 6/9/)
= 12(%)	A1	If M0 allow SC1 for sight of 6(%).
(12% of £256 =) 0.12×256 = (£)30.72	M1 A1	FT 'their derived larger %'.
(To the nearest 10p =) (£)30.7(0)	B1	FT 'their amount' only if rounding required.

16.(a)		Values may be seen on the diagram.
a = -6	B1	,
b = -5	B1	
16.(b) Correct shape in correct position.	В3	B2 for a correct enlargement in incorrect position. B1 for one correct side in correct position. If no marks allow SC1 for showing <u>all</u> the 'rays' from (1,2).
17. P(Alison chooses letter R) = 2/10 or equivalent. P(Sarfraz chooses letter R) = 1/4 or equivalent.	B1 B1	B1 for sight of 2/10 if unambiguously for Alison. B1 for sight of 1/4 if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'. B1 marks may be implied in subsequent work.
Use of 2/10 × 100 OR 1/4 × 100	M1	Calculation may be done in stages.
20 AND 25 clearly implying that Sarfraz is the most likely to choose letter R	A1	There is no requirement to tick the box as long as there is no contradiction. Do <u>not</u> accept, on its own, e.g. 'Sarfraz has less letters to choose from' for the A1.
17. <u>Alternative method</u> P(Alison chooses letter R) = 2/10 or equivalent. P(Sarfraz chooses letter R) = ½ or equivalent. Attempting to give probabilities in a common format.	B1 B1 M1	B1 for sight of 2/10 if unambiguously for Alison. B1 for sight of 1/4 if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'
Correct common format e.g. 4/20 AND 5/20 or 0·2 AND 0·25 clearly implying that Sarfraz is the most likely to choose letter R	A1	There is no requirement to tick the box as long as there is no contradiction. Do <u>not</u> accept, on its own, e.g. 'Sarfraz has less letters to choose from' for the A1.

SUMMER 2019

GCSE
MATHEMATICS – UNIT 1 (INTERMEDIATE TIER)
3300U30-1

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE Mathematics	Mark	Comments
Unit 1: Intermediate Tier	Walk	Comments
1.		
23 – (4 + 2) × 3 = 5 TRUE		
7/10 + 2/5 = 9/15 FALSE		
½ of 1/8 = 1/4 FALSE	В3	For all 5 correct
25% of 0·4 = 0·1 TRUE		B2 for 4 correct.
28 – 3 × 2 + 5 = 55 FALSE		B1 for 3 correct
2.(a)		
Type Yellow Blue		
<100 ≥100 <100 ≥100	B2	For all three correct.
Num. (8) 7 4 6		B1 for 1 or 2 correct.
		If no marks awarded allow B1 for all correct tallies
		seen.
2.(b) Any valid statement that indicates that the	E1	Allow 'add them up'.
numbers (in the table) are added (to make 25).		Allow sight of '8 + 7 + 4 + 6 (= 25).'
e.g. 'add the frequency'		
2.(c) <u>8</u> or equivalent ISW	B2	B1 for x/25 with x<25.
25		B1 for 8/y with y >8.
		Penalise incorrect notation −1.
		e.g. '8 out of 25', '8 : 25', '8 in 25'.
3.(a)		
	B1	
3.(b)		
	B1	
3.(c)		
J.(U)		
<u></u>		
•	B1	
	וטו	
	D4	
4.(a) -3	B1	OD ET #5 -: 22 + 4
1	B1	OR FT 'their −3' + 4.
4.(b)(i) 21	B1	
4.(b)(ii) 191	B1	
4.(c) Divide (the previous number) by 3.	E1	Allow '÷3'.
		Do not accept n÷3.

5.(a) Any correct total of 2 .	B1	B0 if any numbers other than 3 and 7 used.
e.g. 3 + 3 + 3 - 7		B0 if any operation other than + or – used.
		e.g. 3 × 3 is not acceptable for 3 + 3 + 3.
		Allow multi-digit numbers made from 3 or/and 7.
		e.g. 33, 37, 373 etc.
5.(b) Any correct total of 8 .	B1	B0 if any numbers other than 3 and 7 used.
e.g. 7 - 3 + 7 - 3		B0 if any operation other than + or – used.
ŭ		e.g. 2 × 7 is not acceptable for 7 + 7.
		Allow multi-digit numbers made from 3 or/and 7.
		e.g. 33, 37, 373 etc.
5.(c) Any correct total of 19.	B1	B0 if any numbers other than 3 and 7 used.
e.g. 3+3+3+7		B0 if any operation other than + or – used.
9		e.g. 4 × 3 is not acceptable for 3 + 3 + 3 + 3.
		Allow multi-digit numbers made from 3 or/and 7.
		e.g. 33, 37, 373 etc.
6.		<u> </u>
		Allow intent of drawing circles and a rectangle.
ε A ε	B1	Two intersecting circles AND labelled A and B AND
		within a rectangle.
/ 11 / \ 12 \		Allow missing 'E' symbol.
		7 men misering o symbol.
14	B1	For unambiguous indication that the set B consists of
10 \ 20 \ / /	٥.	12, 15 and 18 only.
16 \ /		B0 if any of these numbers are repeated outside B.
17 19		Bo if any of those hambers are repeated edicide B.
	B2	All eleven numbers in correct position (with or without
		a rectangle), with no other or repeated numbers.
		a restangle), marrie ealer er repeated nambere.
		B1 for six to ten numbers in correct position.
		Repeated numbers should not be credited.
		Other numbers may be ignored for this B1 mark.
7.(a) 5(2a - 3)	B1	Mark final answer.
7.(b)(i) $(x =) 147$	B1	Accept embedded answer. Mark final answer.
7.(b)(ii)	<u> </u>	F.T. until 2 nd error.
13f - 6f = 5 - 2	B1	T.T. Grail 2 Offor.
7f = 3	B1	
(f =) 3/7	B1	If FT leads to a whole number answer, it must be
(1 –) 5/1	וט	shown as a whole number. Otherwise accept a
		fraction.
		Mark final answer.
7 (a) (Em. 2) can be even as add ticked as insulted	F4	Allow 0·43 or 0·429 or 0·428 as a final answer.
7.(c) '5n – 3 can be even or odd' ticked or implied	E1	A valid explanation implies
AND a valid explanation given.		'5n – 3 can be even or odd', unless contradicted.
o a 'Ev2 2 = 12 (even) and Ev4 2 = 47 (edd)		Allews - 7 (45 0 -40 00 0 47)
e.g. '5×3 – 3 = 12 (even) and 5×4 – 3 = 17 (odd)'		Allow e.g. '15 – 3 =12, 20 – 3 = 17'.
'if n is odd you get even (but) if n is even you		Allow a correct sequence shown e.g. 2, 7, 12,
get odd'		
		Do <u>not</u> accept
		'n can be anything', 'n can be odd or even'.
		Do <u>not</u> accept an explanation that only uses 5n.
		e.g. '5 × 2 = 10 (even), 5 × 3 = 15 (odd)'

8. (Area of the triangle CDE =) $14 = \frac{4 \times CE}{2}$	M1	Lengths may be shown on the diagram. Accept equivalent e.g. 28 = 4 × CE.
(CE =) 7 (cm)	A1	
(Area ABCE = 7 × 7 =) 49 (cm ²)	B1	FT 'their stated or shown length CE'.
(Area of whole shape = 49 + 14 =) 63 (cm ²)	B1	FT 'their stated or shown area of square' + 14.
8. <u>Alternative method</u> (Area of the triangle CDE =) 14 = <u>4 × CE</u> 2	M1	Lengths may be shown on the diagram.
(CE =) 7 (cm)	A1	
(Area Trapezium ABCD =) $\frac{[(7+4)+7]\times 7}{2}$	M1	FT 'their stated or shown length CE (=CB)' consistently as 'their 7'.
= 63 (cm²) 8.OCW Organisation and Communication.	OC1	For OC1, candidates will be expected to:
Accuracy of writing.	W1	 present their response in a structured way explain to the reader what they are doing at each step of their response lay out their explanation and working in a way that is clear and logical write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to:
		 show all their working make few, if any, errors in spelling, punctuation and grammar use correct mathematical form in their working use appropriate terminology, units, etc
9. (a =) 180 – 110 or equivalent.	M1	
= 35(°)	A1	
b (= 180 – 90 – 35) = 55(°)	B1	OR FT 90 - 'their a'.
c (= 90 + 55) 145(°) OR c (= 180 - 35) 145(°)	B1	OR FT 90 + 'their b'. OR FT 180 - 'their a'

10.(a) For a method that produces 2 prime factors	M1	
from the set {3, 3, 5, 7} before the 2 nd error.		
3, 3, 5, 7	A1	C.A.O. For sight of the four correct factors
		(Ignore 1s)
$3^2 \times 5 \times 7$	B1	F.T. 'their primes' provided at least one index form
0 0 1	"	used with at least a square.
		Allow (3 ²)(5)(7) and 3 ² .5.7
		Inclusion of 1 as a factor gets B0.
10.(b) $42 = 2 \times 3 \times 7$ or equivalent correct strategy.	M1	M1 for sight of 2, 3, 7 'together'.
		(Not for 2x21, 3x14 and 6x7.)
		(Not for just listing all factors 1,2,3,6,7,14,21.)
(HCF =) 21	A1	$M1A0 \text{ for } 3 \times 7.$
, , , , ,		FT 'their answer to 10(a)' only if of equivalent
		difficulty (at least two common prime factors).
11 12	D4	difficulty (at least two confinion prime factors).
11. –13	B1	
Scale on y-axis '2cm square ≡ 10 units'.	B1	
At least 7 correct plots and no incorrect plots.	P1	F.T. 'their (-2,-13)' AND 'their uniform scale' if
'		possible.
		Allow ± '½ a small square'.
		Allow 1 /2 a Sitiali square .
A succeeds some discount the sound the six relate	04	F.T. (the sin O relate) (Only if an uniform cools would)
A smooth <u>curve</u> drawn through their plots.	C1	F.T. 'their 8 plots'. (Only if an uniform scale used.)
		OR a curve through the 7 given plots and (-2,-13).
		Allow intention to pass through their plots
		(within 1 small square, either horizontally or vertically
		of the point).
12.		Answers/working may be seen on diagram.
(Angle AÔB or exterior angle =) 360(°)	M1	Thewere working may be even on diagram.
· · ·	IVII	
8		0: 14 - 5 45 (0 î.B 45)
= 45(°)	A1	Sight of 45 (even e.g. OÂB = 45) gains M1A1.
$(OÂB =) \frac{180 - 45}{2}$	M1	FT 'their 45' (but not 60°).
2		
= 67·5(°)	A1	
3. 3()		
12. Alternative method 1		
	A 4.4	
(Sum of interior angles =) (8 – 2)×180° or equivalent	M1	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
= 1080(°)	A1	(Interior angle =) 135(°) implies M1A1
(OÂB =) ½ × (1080 ÷ 8) or equivalent	M1	FT 'their interior angle sum' (≠ 1440)
= 67·5(°)	A1	_ , , ,
12. Alternative method 2	<u> </u>	<u> </u>
(Using 16 right-angled triangles.)		
	A 4 4	
(Angle at O =) 360 / 16	M1	
= 22·5(°)	A1	
$(O\hat{A}B =) 180 - 90 - 22.5$	M1	FT 'their 22·5'.
= 67·5(°)	A1	
	•	

13.		Correct construction arcs must be seen for the first three B1 marks.
Correct construction <u>method</u> for perpendicular bisector with line drawn.	B1	Two pairs of Intersecting arcs (centres at A and B)
Correct construction <u>method</u> for 60° at point A.	B1	Allow if drawn at point B. Allow B1 for correct method (tolerance will be penalised with final B0).
Correct construction method for bisecting an angle with line drawn.	B1	FT 'their angle of 60°' drawn at point A or point B.
Point P clearly identified	B1	C.A.O. within tolerance. Intersecting lines alone with no indication that this is point P is not sufficient for this B1. Do not penalise if both possible positions shown. Final B1 may be awarded after B0B0B0.
13. Alternative method		
		Correct construction arcs must be seen for the first three B1 marks
Correct construction method for 60° at point A (or B).	B1	Allow B1 for correct method (tolerance will be penalised with final B0).
Correct construction method for bisecting the angle at A (or B) with line drawn.	B1	
Repeating the above two stages at B (or A)	B1	
Point P clearly identified	B1	C.A.O. within tolerance. Intersecting lines alone with no indication that this is point P is not sufficient for this B1. Do not penalise if both possible positions shown. Final B1 may be awarded after B0B0B0.
14. Sight of any TWO of 30, 2 or 0·5 OR Sight of any TWO of 30, 8 or 0·5 as appropriate approximations.	B1	Allow 30·2 for 30.
30 × 8 or equivalent. 0⋅5	M1	Equivalent e.g. $30 \times 2 \times 2 \times 2$ or 30×2^3 0.5 Must be seen, but allow if attempted calculation done in steps. M0 for exact calculation.
= 480	A1	C.A.O. Allow 483·2 if 30·2 used.

15.(a) 0·32	B1	
15.(b) Sample number from Anglesey on 2 nd day		
= 3000 × 0·42	M1	
= 1260	A1	Allow M1A1 for sight of 1260 e.g. 1260/3000
(Rel.Fqu. for two days =) 640 + 1260	M1	FT 'their 1260'.
2000 + 3000	IVII	1 1 their 1200.
= 0.38	A1	
15.(c) 'Answer to part (b)' noted AND		
Valid explanation	E1	Explanation must refer to the sample being the
e.g. 'more people sampled'		largest.
		Allow e.g 'from both days', 'number of people added',
		'frequencies are added'.
16.(a)(i) 425 kg	B1	Do not accept 'relative frequencies are added'.
16.(a)(i) 425 kg 16.(a)(ii) 21.5 s	B1	
16.(a)(iii) 83 people	B1	
16(b) 2·38 × 10 ⁻²	B2	B1 for sight of a correct answer but not in standard
2 30 % 10	D2	form.
		e.g. 23·8 × 10 ⁻³ or 0·0238.
17.(a) 5n < 3n + 7 or equivalent ISW	B2	2n < 7 OR n < 7/2 implies B2.
		Ignore use of a different letter e.g. 5x < 3x + 7.
		Use of '≤' is B1.
		B1 for sight of 3n + 7 in an inequality.
17.(b) $2n < 7 OR n < 7/2$	B1	FT 'their inequality' if of equivalent difficulty.
		May be seen in part (a).
(Greatest amount =) (£)3	B1	FT 'their n < k'. B0 if they have 'n>k'.
(Greatest amount –) (£)3	ы	B0 if it leads to n<1
		An answer of (£)3 gains B1B1 (unless from incorrect
		algebra work).
18.(a) 0⋅7 shown for 'Does not go on tour bus'.	B1	,
Use of 0·3 × = 0·24	M1	
P(sees show) = 0.8	A1	Allow M1A1 if 0·8 seen on one of the 'sees show' branches.
Second set of branches 0·8, 0·2, 0·8, 0·2	A1	FT 'their 0·8' only if M1 awarded.
		(0·24, 0·76, 0·24, 0·76 is M0A0A0)
18.(b) 0·7 × 0·2	M1	FT 'their values' if both between 0 and 1.
= 0·14 ISW	A1	

SUMMER 2019

GCSE
MATHEMATICS – UNIT 2 (INTERMEDIATE TIER)
3300U40-1

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC GCSE MATHEMATICS (NEW)

GCSE Mathematics Unit 2: Intermediate Tier	Mark	Comments
1.(a)(i) 28·34 or 1417/50 or 28 ¹⁷ / ₅₀ ISW	B2	B1 for sight of 23·04 OR sight of 5·3. If B0 allow SC1 for 28 or 28·3
1.(a)(ii) 34·8 or 174/5 or 34 ⁴ / ₅ ISW	B1	
1.(a)(iii) 125	B2	B1 for sight of 1/8 or 0·125 or 1000/8 or 1000÷8
1.(b) 440	B1	B0 for 440·0
2.(a) (19 – 18·2 =) 0·8	B2	B1 for sight of 19 OR sight of -18·2. BUT B0 for 19f - 18·2g. Mark final answer.
2.(b) $7x = 16$ (x =) 16/7 (x =) 2.3 (to 1dp)	B1 B1 B1	FT from 7x = k. Allow 16 ÷ 7 FT from any fraction that requires rounding. Mark final answer. (x =) 2·2 implies B1B1B0. Allow an embedded 2·3, B1B1B0
3.(a) 4 hours 45 min	B1	
3.(b) 2·4 km	B1	
3.(c) 7km less than 5 miles TRUE 1kg less than 2lb FALSE 1 litre less than 1 pint FALSE 8 litres less than 900cm³ FALSE	B2	For all 4 correct. B1 for 3 correct.
Two relevant (sides of one double the other) rectangles or squares considered.	M1	Sketch shown or lengths stated. If M0, only the B marks are available.
Perimeter AND area of 1 st rectangle correctly calculated. Perimeter AND area of 2 nd rectangle correctly calculated.	B1 B1	Ignore missing units BUT penalise –1, once only, for incorrect units. (Applies to these B1 marks.)
Clear statement that the perimeter has been	A2	FT 'their <u>stated</u> values' for both perimeter and area.
doubled but the area has not been doubled (and that Catrin is incorrect.)		If not A2, then A1 for correct perimeter statement for 'their values'. OR A1 for correct area statement for 'their values'. Accept statement that area is 4 times as big.
		Allow for A2 'only the perimeter has been doubled'. (implies that the area has not been doubled.)
		Also for A2. 'The area is not doubled so Catrin is incorrect' answers the question. In this case Award SC1 and SC1 (instead of B1 and B1) if areas correctly calculated.
		Correct statements, for BOTH perimeter and area, with <u>no</u> supporting work gains SC1.

5. (18% of £256 =) 0·18 × 256	M1	
= (£)46.08	A1	Allow (£)46.10
(Larger share =) 2×46.08	M1	FT 'their stated 18%'.
= (£)30.72	A1	If M0 allow SC1 for sight of (£)15.36
(To the nearest 10p =) (£)30.7(0)	B1	FT 'their larger share' (not 'their 18%') and only if rounding required.
5. Alternative method 1 (Larger share of £256 =) 2×256 3	M1	
= (£)170.66()	A1	Allow (£)170.70 If M0 allow SC1 for sight of (£)85.33.
(18% of £170.66 =) 0·18 × 170.66 = (£)30.72	M1 A1	FT 'their stated larger share'.
(To the nearest 10p =) (£)30.7(0)	B1	FT 'their 18%' (not 'their larger share') and only if rounding required.
5. Alternative method 2 (Larger share of 18% =) $\frac{2 \times 18}{3}$	M1	
= 12(%)	A1	If M0 allow SC1 for sight of 6(%).
$(12\% \text{ of } £256 =) 0.12 \times 256$ = $(£)30.72$	M1 A1	FT 'their derived larger %'.
(To the nearest 10p =) (£)30.7(0)	B1	FT 'their amount' only if rounding required.
5.OCW Organisation and Communication.	OC1	For OC1, candidates will be expected to:
Accuracy of writing.	W1	For W1, candidates will be expected to:
6.(a) a(7b+11)	B1	Allow 1a(7b + 11)
6.(b) x(x-8)	B1	Allow $1x(x-8)$
6.(c) 8y – 12y ²	B2	Must be an expression for B2. B1 for sight of 8y or −12y². Mark final answer.
7.(a) a = -6 b = -5	B1 B1	Values may be seen on the diagram.
7.(b) Correct shape in correct position.	B3	B2 for a correct enlargement in incorrect position. B1 for one correct side in correct position. If no marks allow SC1 for showing <u>all</u> the 'rays' from (1,2).

8. P(Alison chooses letter R) = 2/10 or equivalent. P(Sarfraz chooses letter R) = 1/4 or equivalent. Use of 2/10 × 100 OR 1/4 × 100	B1 B1 M1	B1 for sight of 2/10 if unambiguously for Alison. B1 for sight of 1/4 if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'. B1 marks may be implied in subsequent work. Calculation may be done in stages.
20 AND 25 clearly implying that Sarfraz is the most likely to choose letter R	A1	There is no requirement to tick the box as long as there is no contradiction. Do <u>not</u> accept, on its own, e.g. 'Sarfraz has less letters to choose from' for the A1.
8. <u>Alternative method</u> $P(Alison \ chooses \ letter \ R) = 2/10 \ or \ equivalent.$ $P(Sarfraz \ chooses \ letter \ R) = \frac{1}{4} \ or \ equivalent.$	B1 B1	B1 for sight of 2/10 if unambiguously for Alison. B1 for sight of 1/4 if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'
Attempting to give probabilities in a common format.	M1	
Correct common format e.g. 4/20 AND 5/20 or 0·2 AND 0·25 clearly implying that Sarfraz is the most likely to choose letter R	A1	There is no requirement to tick the box as long as there is no contradiction. Do <u>not</u> accept, on its own, e.g. 'Sarfraz has less letters to choose from' for the A1.
9.(a) 3n + 5 or equivalent	B2	B1 for sight of 3n. B0 for -3n Mark final answer.
9.(b) $3t = r + 8$ or $r + 8 = 3t$ or $-3t = -r - 8$ $t = \frac{r + 8}{3}$ or $\frac{r + 8}{3} = t$ or $t = \frac{-r - 8}{-3}$	B1 B1	F.T. only from $3t = \pm r \pm 8$, stated or implied. ($3t = r + 8$ will have already gained the previous B1.) B1B0 for $-t = \frac{-r - 8}{3}$ or equivalent. Mark final answer. Note
		Allow B1B0 for $t = (r + 8) \div 3$ with or without brackets. Allow B1B0 for $r + 8$ ('t' missing)
9.(c) 6x + 4 = 46 OR 3x + 2 = 23	B2	B1 for $(x + 5) + (2x - 3) + (x + 5) + (2x - 3) = 46$ or equivalent e.g. $(x + 5) + (2x - 3) = 23$
6x = 42 OR 3x = 21	B1	FT collection of 'their terms' if of equivalent difficulty. (linear equation only.)
(x =) 7	B1	FT <u>only</u> from ax = b. Allow a fraction from a FT value unless x is a whole number. (x =) 7 gains all four marks.
		Each B mark implies all previous B marks. Mark final answer.
9.(c) <u>Alternative method</u> A trial showing correct values and understanding of perimeter. (e.g. 2(4 + 5) + 2(2×4 – 3) = 28)	B1	Consistent use of x AND correct evaluation.
An improved trial.	B1	Dependent on first B1. If 1st trial is using '7' award B1B1 followed by B1 if left
(x =)7	B2	embedded but B2 if shown as $x = 7$. B1 for an implied / embedded ' $x = 7$ ' but not shown as $x = 7$. ($x = 7$) 7 gains all four marks. Mark final answer.

Intent to square at least two of the three values.	S1	(Note: $12 \cdot 8^2 = 163 \cdot 84$, $22 \cdot 7^2 = 515 \cdot 29$ and $25 \cdot 6^2 = 655 \cdot 36$)
Comparing $(25\cdot6)^2$ with $(12\cdot8)^2 + (22\cdot7)^2$ or Any intent to compare any other relevant values. (e.g. $(25\cdot6)^2 - (22\cdot7)^2$ with $(12\cdot8)^2$ or $\sqrt{[(12\cdot8)^2 + (22\cdot7)^2]}$ (with $25\cdot6$)	M1	The comparison attempted must show <u>both</u> intended calculations e.g. $(25\cdot6)^2$ AND $(12\cdot8)^2 + (22\cdot7)^2$ unless intention is to compare with a given side e.g. $\sqrt{[(12\cdot8)^2 + (22\cdot7)^2]}$ with $25\cdot6$
Correct evaluation of value(s) to be compared. (e.g 'sight of 655·36 WITH 679·13' or 'sight of 140·07 WITH 163·84' or 'sight of 26·06 (WITH 25·6)')	A1	C.A.O. but allow evaluated answers to be given to the nearest whole number. e.g. 655 WITH 679.
Statement that it is NOT possible	A1	Allow FT if M1 awarded. If all marks gained ISW.
10. <u>Alternative method 1</u> Intent to use two right-angled trig ratios using 2 <u>different pairs</u> of given sides	S1	i.e. In order to find the value of either the same angle OR two different angles, whilst sufficient to show that it isn't a right-angled triangle.
Correct right-angled trig ratio used twice , using 2 <u>different given sides</u> , in order to compare the values of the same angle or the sum of the two angles with 90°. 	M1	
Correct evaluation of value(s) to be compared. e.g. sight of any two of 30(°), 27.5(°) and 29.4(°) OR sight of 30(°) and 60.58(°) (and the sum to be compared with 90°)	A1	Ratio Opp Adj Hyp Angle Sin 12.8 25.6 30(°) Cos 22.7 25.6 27.5(°) Tan 12.8 22.7 29.4(°) Sin 22.7 25.6 62.46(°) Cos 12.8 25.6 60(°) Tan 22.7 12.8 60.58(°)
Statement that it is NOT possible	A1	If comparing the sum of two angles (with 90°), the sum must be shown. Allow FT if M1 awarded. If all marks gained ISW.
10. Alternative method 2 (using the cosine rule)		NOTE The cosine rule is not on the intermediate tier specification, but as it is a common question, it may
$(\cos A =) (12.8^2 + 22.7^2 - 25.6^2) / (2 \times 12.8 \times 22.7)$ (= 2377/58112 or 0.0409)	M2	be seen by Higher tier candidates. M1 for $25.6^2 = 12.8^2 + 22.7^2 - 2 \times 12.8 \times 22.7 \times \cos A$
(A =) 87(.6557°)	A1	
Statement that it is NOT possible	A1	If all marks gained ISW.
11.(a) A ∩ B	B1	
11.(b) B ^I	B1	
Four numbers with a range of 10. Four numbers with a total of 36. Four numbers with a median of 8. Possible answers for all three marks are 5,5,11,15 or 5,6,10,15 or 5,7,9,15 or 5,8,8,15	B1 B1 B1	B0 if all four original numbers used.

40 / 1 / 10 / 100		
13. (number of females in Porth =) 90 × 128	M1	Or equivalent
360		
OR (number of males in Porth =) $\frac{120}{20}$ × 72		
360		
	_	Answers may be seen on the diagram.
(number of females in Porth =) 32	A1	An answer of 32 implies M1.
(number of males in Porth =) 24	A1	An answer of 24 implies M1.
(Probability from Porth =) <u>56</u> or equivalent ISW	A1	FT ('their 32' + 'their 24') /200 provided M1 gained.
200		Penalise incorrect notation −1. e.g. '56 in 200'.
14. $\sin(QPR) = 9.6$	M1	
16.7		
$(QPR =) \sin^{-1} (9.6/16.7) \text{ or } \sin^{-1} (0.57)$	m1	Implies M1.
		i i
= $35 \cdot 1(^{\circ})$ or $35 \cdot 09(^{\circ})$ or $35 \cdot 089(^{\circ})$	A1	Allow any answer that rounds to 35(°)
14.Alternative method.		
Correct use of 'two-step' method.	M2	A partial trigonometric method is M0.
$(x) = 35.1(^{\circ}) \text{ or } 35.09(^{\circ}) \text{ or } 35.089(^{\circ})$	A1	Allow any answer that rounds to 35(°)
15. $7x + 2y = (£)41.5(0)$ AND	B1	Allow use of other letters to denote variables.
4x + 3y = (£)29.75	-:	B0 for using 4150 and 2975.
0, (2)200		
		FT 'their equations' if of equal difficulty.
Method to eliminate variable	M1	Allow 1 error in one term, not one with equal
(Attempt at equal coefficients and subtraction)	IVII	coefficients.
(Attempt at equal coefficients and subtraction)		coefficients.
First variable found $y = (0) = x + y = (0) = 0$	۸1	CAO (for their equations if ET.)
First variable found $x = (\pounds) 5$ or $y = (\pounds) 3.25$. Substitute to find the 2^{nd} variable.	A1	C.A.O. (for their equations if FT.)
	m1	F.T. their '1 st variable'.
Second variable found.	A1	ET an account also cold by a viscous to the an account a country
		FT answers should be given to the nearest penny
		(rounded or truncated).
		If M0, award SC2 (with possible B1) for <u>both</u> answers
		of (£) 5 AND (£)3.25.
16.		Correct evaluation regarded as enough to identify if
		'too high' or 'too low'. If evaluations not seen accept
		'too high' or 'too low'.
		\underline{x} $\underline{2x^3 + x - 10}$ (or check $2x^3 + x = 10$)
One correct evaluation $1 \le x \le 2$	B1	_
2 correct evaluations $1.55 \le x \le 1.75$,	B1	1 -7
one < 0, one > 0.		1.1 -6.238
2 correct evaluations $1.55 \le x \le 1.65$,	M1	1.2 -5.344
one < 0, one > 0.		1.3 -4.306
		1.4 -3.112 1.45 - 2.452
x = 1⋅6	A1	1.5 -1.75 1.55 - 1.002
		1.6 -0.208 1.65 0.634
		1·7 1·526 1·75 2·468
		1.8 3.464 (1.62 0.123)
		1.9 5.618 (1.63 0.291)
		2 8 (1.64 0.461)
17. 85% ≡ 6154	B1	Accept any indication.
<u>6154</u> × 100 OR <u>6154</u>	M1	Implies the B1.
85 0.85		
= 7240	A1	
18. x = 54(°)	B1	
Opposite angles (of a) cyclic quad. (add up to 180°).	E1	Dependent on an attempt at 180 – 126.
(, () , () , (, , , , , , , , , , , , , , , , , , , ,
y = 108(°)	B1	FT 2 × 'their 54' only if less than 360°
Angle at the centre (is twice the angle at the	E1	Dependent on an attempt at 2 × 'their 54'.
circumference).	-'	Topolius in all allompt at E allom of .
		1

3300U40-1 WJEC GCSE Maths – Unit 2 IT MS S20/DM

SUMMER 2019

GCSE
MATHEMATICS – UNIT 1 (HIGHER TIER)
3300U50-1

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE MATHEMATICS Unit 1: Higher Tier	Mark	Comments
1.(a) For a method that produces 2 prime factors from the set {3, 3, 5, 7} before the 2 nd error.	M1	
3, 3, 5, 7	A1	C.A.O. For sight of the four correct factors (Ignore 1s)
$3^2 \times 5 \times 7$	B1	FT 'their primes' provided at least one index form used with at least a square. Allow $(3^2)(5)(7)$ and $3^2.5.7$
1.(b) $42 = 2 \times 3 \times 7$ or equivalent correct strategy.	M1	Inclusion of 1 as a factor gets B0. M1 for sight of 2, 3, 7 'together'.
1.(b) 42 - 2 ^ 3 ^ 7 or equivalent correct strategy.	IVII	(Not for 2x21, 3x14 and 6x7.)
		(Not for just listing all factors 1,2,3,6,7,14,21.)
(HCF =) 21	A1	M1A0 for 3 × 7.
		FT 'their answer to 1(a)' only if of equivalent difficulty (at least two common prime factors).
213	B1	(at least two common prime factors).
Scale on y-axis '2cm square ≡ 10 units'.	B1	
At least 7 correct plots and <u>no incorrect</u> plots.	P1	FT 'their (−2, −13)' AND 'their uniform scale' if possible. Allow ± '½ a small square'.
A smooth <u>curve</u> drawn through their plots.	C1	FT 'their 8 plots'. (Only if an uniform scale used.) OR a curve through the 7 given plots and (-2, -13). Allow intention to pass through their plots (within 1 small square, either horizontally or vertically of the point).

	1	
3. (Angle AÔB or exterior angle =) $\frac{360}{8}$ (°)	M1	Answers/working may be seen on diagram.
= 45(°)	A1	Sight of 45 (even e.g. OÂB = 45) gains M1A1.
$(O\hat{A}B =) \frac{180 - 45}{2}$	M1	FT 'their 45' (but not 60°).
= 67·5(°)	A1	
3. Alternative method 1	t	
(Sum of interior angles =) $(8 - 2) \times 180^{\circ}$ or equivalent	M1	
= 1080(°)	A1	(Interior angle =) 135(°) implies M1A1
(OÂB =) ½ × (1080 ÷ 8)	M1	FT 'their interior angle sum' (≠ 1440)
= 67·5(°)	A1	a.e. menor angle cam (, 1110)
3. Alternative method 2	1	
(Using 16 right-angled triangles)		
(Angle at O =) 360 / 16	M1	
= 22·5(°)	A1	
(OÂB =) 180 – 90 – 22·5	M1	FT 'their 22·5'.
= 67·5(°)	A1	
Organisation and Communication.	OC1	For OC1, candidates will be expected to:
	1	present their response in a structured way
		explain to the reader what they are doing at
		each step of their response
		lay out their explanation and working in a way that is clear and logical
		write a conclusion that draws together their
		results and explains what their answer means
Accuracy of writing.	W1	For W1, candidates will be expected to:
, ŭ	1	show all their working
		make few, if any, errors in spelling,
		punctuation and grammar
		use correct mathematical form in their
		working
	1	use appropriate terminology, units, etc
	1	and appropriate terminology, arms, oto

	1	
4.		Correct construction arcs must be seen for the first
Correct construction method for	B1	three B1 marks. Two pairs of intersecting arcs (centres at A and B).
perpendicular bisector with line drawn.	D1	Two pairs of intersecting ares (certifes at A and B).
porportational biodotto marillio diamii.		
Correct construction method for 60° at	B1	Allow if drawn at point B.
point A.		Allow B1 for correct method (tolerance will be
		penalised with final B0).
	D.4	FT (I
Correct construction method for	B1	FT 'their angle of 60°' drawn at point A or point B.
bisecting an angle with line drawn.		
Point P clearly identified	B1	C.A.O. within tolerance.
,		Intersecting lines alone with no indication that this is
		point P is not sufficient for this B1.
		Do not penalise if both possible positions shown.
		Final B1 may be awarded after B0B0B0.
4. Alternative method		
		Correct construction arcs must be seen for the first three B1 marks
Correct construction method for 60° at	B1	Allow B1 for correct method (tolerance will be
point A (or B).	ы	penalised with final B0).
point (or 2).		portaneed war initial Boy.
Correct construction method for	B1	
bisecting the angle at A (or B) with line drawn.		
Repeating the above two stages at B (or A)	B1	
Point P clearly identified	B1	C.A.O. within tolerance.
		Intersecting lines alone with no indication that this is
		point P is <u>not sufficient</u> for this B1.
		Do not penalise if both possible positions shown.
E Cight of any TMO of 20, 2 or 0 E	D4	Final B1 may be awarded after B0B0B0.
5. Sight of any TWO of 30, 2 or 0.5 OR Sight of any TWO of 30, 8 or 0.5	B1	Allow 30·2 for 30.
as appropriate approximations.		
<u>30 × 8</u> or equivalent.	M1	Equivalent e.g. 30 × 2 × 2 × 2 or 30 × 2 ³
0.5		Equivalent e.g. $30 \times 2 \times 2 \times 2$ or 30×2^3 $1/2$ 0.5
		Must be seen, but allow if attempted calculation done
		in steps.
		M0 for exact calculation.
= 480	A1	C.A.O. Allow 483·2 if 30·2 used.
6.(a) 0·32	B1	C.A.C. Allow 400 Z II 00 Z used.
6.(b) Sample number from Anglesey on 2 nd day	† -	
= 3000 × 0·42	M1	
= 1260	A1	Allow M1A1 for sight of 1260 e.g. 1260/3000
(B. 15		FT (4
(Rel.Fqu. for two days =) 640 + 1260	M1	FT 'their 1260'.
2000 + 3000	۸.1	
= 0.38 6.(c) 'Answer to part (b)' noted AND	A1 E1	Explanation must refer to the sample being the
6.(c) 'Answer to part (b)' noted AND Valid explanation		largest.
e.g. 'more people sampled'		Allow e.g 'from both days', 'number of people added',
3 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6		'frequencies are added'.
		Do not accept 'relative frequencies are added'.

7.(a)(i) 425 kg	B1	
7.(a)(ii) 21·5 s	B1	
7.(a)(iii) 83 people	B1	
7.(b) 2·38 × 10 ⁻²	B2	B1 for sight of a correct answer but not in standard form
		e.g. 23·8 × 10 ⁻³ or 0·0238.
8.(a) 0.7 shown for 'Does not go on tour bus'.	B1	
Use of 0·3 × = 0·24	M1	
P(sees show) = 0.8	A1	Allow M1A1 if 0·8 seen on one of the 'sees show' branches.
Second set of branches 0·8, 0·2, 0·8, 0·2	A1	FT 'their 0·8' only if M1 awarded. (0·24, 0·76, 0·24, 0·76 is M0A0A0)
8.(b) 0.7×0.2 = 0.14 ISW	M1 A1	FT 'their values' if both between 0 and 1.
9.(a) 5n < 3n + 7 or equivalent ISW	B2	2n < 7 OR n < 7/2 implies B2. Ignore use of a different letter e.g. 5x < 3x + 7. Use of '≤' is B1. B1 for sight of 3n + 7 in an inequality.
9.(b) 2n < 7 OR n < 7/2	B1	FT 'their inequality' if of equivalent difficulty. May be seen in part (a).
(Greatest amount =) (£)3	B1	FT 'their n < k'. B0 if they have 'n>k'. B0 if it leads to n<1. An answer of (£)3 gains B1B1 (unless from incorrect algebra work).
10. Lines $x = -2$, $y + x = 1$ and $2y = x$ all correct.	B2	B1 for any 2 correct lines. If $x = -2$ and any other vertical or horizontal line shown e.g. $y = \pm 2$ or $x = 2$, do not award a mark unless $x = -2$ is selected for the region or clearly labelled.
Correct region identified.	B1	FT provided region is closed and B1 awarded. Accept indication by 'shading out'.
11. $cx - 4x = d + 3$ or $-3 - d = 4x - cx$	B1	FT until 2^{nd} error provided equivalent difficulty. Collecting x terms.
x(c-4) = d+3 or $-3-d = x(4-c)$	B1	Factorising.
x = (d+3)/(c-4) or $x = (-3-d)/(4-c)$ or equivalent	B1	Dividing. Mark final answer.
12. Values given for any two missing angles.	B1	(Check diagrams) Missing angle(s) is/are 32° or 83° and 65° If all three angles are given, they must all be correct.
Explanation that the triangles are congruent due to angle, side, angle or ASA or equivalent.	E1	Or equivalent. No FT from incorrect angles. Dependent on at least one correct angle found.
13. (a) $x = 0.2488888$ $10x = 2.488888$ with	M1	Or $1000x$ and $100x$, or equivalent.
an attempt to subtract 224/900 or 112/450 or 56/225 or equivalent e.g. 2464/9900	A1	An answer of 2·24/9 or 22·4/90 gains M1 only. ISW.
Alternative method		
(0·24 + 0·00888=) 24/100 + 8/900 or equivalent 224/900 (= 56/225)	M1 A1	ISW
13. (b) 9	B2	B1 for $729^{\frac{1}{3}}$ or $3\sqrt{729}$ or $(729/1)^{\frac{1}{3}}$ or 3^2 or $(1/9)^{-1}$ or $1/(1/9)$ Allow B1 for $1/9$ or -9 .

T	1	T =
14.		Check diagram.
EBC or ECB = (180 – 58) / 2	M1	Angles in an isosceles triangle.
= 61(°)	A1	
	,	
DAO 04/0)	D.4	Alt.
BAC = 61(°)	B1	Alternate segment theorem.
		FT 'their <i>EBC</i> or <i>ECB</i> '.
ADC (- 100 25 61) - 94(°)	B1	ET 190 25 'their PAC'
ABC (= 180 – 35 – 61) = 84(°)	DI	FT 180 – 35 – 'their <i>BAC</i> '.
Alternative method 1		Check diagram.
EBC or ECB = (180 – 58) / 2	M1	Angles in an isosceles triangle.
= 61(°)	A1	
	, , ,	
	- 4	
$DBA = 35(^{\circ})$	B1	Alternate segment theorem.
	B1	Angles on a straight line
ABC (= 180 – 35 – 61) = 84(°)		
		FT 180 – 'their EBC' – 'their DBA'.
Alternative method 2	 	Check diagram.
	1.4.4	_
EBC or ECB = (180 – 58) / 2	M1	Angles in an isosceles triangle.
= 61(°)	A1	
· · ·		
ACF (=180 - 35 - 61) = 84(°)	B1	Angles on a straight line.
701 (-100 - 30 - 01) - 0 1 ()	וט	
	_	FT 180 – 35 – 'their ECB'.
$ABC = 84(^{\circ})$	B1	Alternate segment theorem.
, ,		FT 'their ACF'.
		The state of the s
All and a thing and the add O		Oh L - L'
Alternative method 3		Check diagram.
(using isosceles triangle BOC, where O is the		
centre of the circle)		
BOC = 360 - 90 - 90 - 58	M1	Angles in kite BOCE
		Angles in kile book
= 122	A1	
BAC = 61	B1	Use of angle in the centre
		FT 'their BOC' ÷ 2
ADO (- 400 OF C4) - 04/9	D4	
ABC (= 180 – 35 – 61) = 84(°	B1	FT 180 – 35 – 'their BAC'
15. (a) $3\sqrt{5}$	B1	
10. (4) 5 4 5		
45 (1) 4	M1	Allow one incorrect term.
15. (b) $4 \times \sqrt{49} - 2\sqrt{7 \times 3} - 2\sqrt{7 \times 3} + \sqrt{9}$	1011	
or $4 \times 7 - 2\sqrt{21} - 2\sqrt{21} + 3$		$\sqrt{7}\sqrt{7}$ is insufficient for $\sqrt{49}$.
or equivalent		$\sqrt{3}\sqrt{3}$ is insufficient for $\sqrt{9}$.
		Allow $\sqrt{7}\sqrt{3}$ or $\sqrt{3}\sqrt{7}$ for $\sqrt{21}$.
		THIOM VIVO OF VOVI TOF VAI.
21 4 24		
$31 - 4\sqrt{21}$	A1	$\sqrt{7}\sqrt{3}$ or $\sqrt{3}\sqrt{7}$ is insufficient for $\sqrt{21}$.
16. $4\pi R^3 = \pi r^3$	M2	Equating volumes
$\frac{4m\chi}{3} = \frac{m}{6}$		Award M1 for sight of:
ی ا		
		(Volume of cylinder =) $\pi r^2 \times r/6$ or equivalent
		$4\pi r^3 = \pi r^3$ is awarded M1.
		$\overline{3}$ $\overline{6}$
24.03 - 2.3	mc 4	Assembly and for all ordings from the second AND
$24R^3 = 3r^3$	m1	Award m1 for clearing fractions AND cancelling π
or $R = 3\sqrt{(\pi r^3/6)/(4\pi/3)}$		or for isolating R
or $R^3 = (\pi r^3/6)/(4\pi/3)$		or for isolating R^3 .
or equivalent		
or oquivalorit		ET if M4 awarded and if any inclease differents.
		FT if M1 awarded and if equivalent difficulty
R = <u>r</u>	A1	CAO
$\bar{2}$		
	B1	
17. (a) $y = f(x) + 2$		
17. (b) $y = f(-x)$	B1	
		•

18. (a) 4/10 × 3/9 × 6/8 or equivalent	M1	Accept e.g.
		6/10 × 4/9 × 3/8 or (6 × 4 × 3)/(10 × 9 × 8)
72/720 (= 1/10) or equivalent	A1	Now has insulied by subsequent weaking
18. (b) 1 – P(three red) or 1 – P(no yellow) = 1 – [6/10 × 5/9 × 4/8] (= 1 – 120/720 or 1 – 1/6)	S1 M1	May be implied by subsequent working. <u>Complete</u> method.
= 600/720 (= 5/6) or equivalent	A1	ISW FT from part (a) consistent use of a wrongly calculated denominator. If no other marks awarded,
		SC1 for sight of 784/1000 or equivalent (from a method 'with replacement')
Alternative method P(YRR or RYR or RRY or YYR or YRY or RYY or YYY) or equivalent (allow up to two of these terms to be missing or incorrect for this mark)	S1	
= 4/10×6/9×5/8×3 + 4/10×3/9×6/8×3 + 4/10×3/9×2/8 or equivalent (complete method required for this mark)	М1	FT 4/10×6/9×5/8×3 + 'their part (a)' × 3 + 4/10×3/9×2/8
= 600/720 (= 5/6) or equivalent ISW	A1	
19. (a) $\frac{a}{x(x-a)}$ or $\frac{a}{x^2-ax}$	B2	B1 for correct numerator - <u>not</u> from incorrect work – use of brackets may be implied. B1 for correct denominator in a single fraction (accept equivalent)
		If B2, penalise -1 for incorrect subsequent work
19. (b) $x - 1 + 2x(4x + 3) = 0$ or $x - 1 + 8x^2 + 6x = 0$ or $x - 1 = -2x(4x + 3)$	M1	Clearing fraction Allow e. g. $x - 1 + 2x(4x + 3) = 0$ x(4x + 3) Allow M1 for $x - 1 = 2x(4x + 3)$
$8x^2 + 7x - 1 = 0$	A1	Collecting terms and re-arranging quadratic equation Ignore presence of denominator (provided correct).
(8x-1)(x+1) = 0	B2	B1 for $(8x ext{ 1})(x ext{ 1})$ FT their quadratic equation, provided of equivalent difficulty.
$x = \frac{1}{8}$ or $x = -1$	B1	Both answers required. Strict FT 'their <u>derived</u> brackets'.
		<u>Using quadratic formula</u> FT their quadratic equation, provided of equivalent difficulty.
		$(x =) \frac{-7 \pm \sqrt{[7^2 - 4(8)(-1)]}}{2(8)}$ M1
		For M1, allow one error, in sign or substitution, but not in formula. $x = \frac{-7 \pm \sqrt{81}}{16}$ A1
		16 $x = \frac{1}{8} \text{ or } x = -1 \text{ (both answers required) A1}$
		No marks for a trial and improvement method.

SUMMER 2019

GCSE
MATHEMATICS – UNIT 2 (HIGHER TIER)
3300U60-1

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE MATHEMATICS	Manda	Comments
Unit 2 : Higher Tier	Mark	Comments
1.(a) 3n + 5 or equivalent	B2	B1 for sight of 3n. B0 for −3n
		Mark final answer.
1.(b) $3t = r + 8$ or $r + 8 = 3t$ or $-3t = -r - 8$	B1	
$t = \frac{r+8}{3}$ or $\frac{r+8}{3} = t$ or $t = \frac{-r-8}{-3}$	B1	F.T. only from $3t = \pm r \pm 8$, stated or implied. ($3t = r + 8$ will have already gained the previous B1.)
3 3 -3		B1B0 for $-t = -t - 8$ or equivalent.
		3
		Mark final answer.
		<u>Note</u>
		Allow B1B0 for $t = (r + 8) \div 3$ with or without brackets.
		Allow B1B0 for $r + 8$ ('t' missing)
4 (-) C: + 4 - 4C	DO	3 D4 for (v + 5) + (0 + 2) + (v + 5) + (0 + 2) = 40
1.(c) $6x + 4 = 46$ OR $3x + 2 = 23$	B2	B1 for $(x + 5) + (2x - 3) + (x + 5) + (2x - 3) = 46$ or equivalent e.g. $(x + 5) + (2x - 3) = 23$
		or equivalent e.g. (x + 3) + (2x - 3) - 23
6x = 42 OR 3x = 21	B1	FT collection of 'their terms' if of equivalent difficulty.
		(linear equation only.)
(x =) 7	B1	FT <u>only</u> from ax = b.
		Allow a fraction from a FT value unless x is a whole
		number. (x =) 7 gains all four marks.
		Each B mark implies all previous B marks.
		Mark final answer.
1.(c) Alternative method		
A trial showing correct values and understanding	B1	Consistent use of x AND correct evaluation.
of perimeter. (e.g. $2(4 + 5) + 2(2 \times 4 - 3) = 28$)		
An i <u>mproved</u> trial.	B1	Dependent on first B1.
		If 1 st trial is using '7' award B1B1 followed by B1 if left embedded but B2 if shown as x = 7.
(x =)7	B2	B1 for an implied / embedded 'x = 7' but not shown
(^ //		as $x = 7$.
		(x =) 7 gains all four marks.
		Mark final answer.

Intent to square at least two of the three values.	S1	(Note: $12 \cdot 8^2 = 163 \cdot 84$, $22 \cdot 7^2 = 515 \cdot 29$ and $25 \cdot 6^2 = 655 \cdot 36$)
Comparing $(25\cdot6)^2$ with $(12\cdot8)^2 + (22\cdot7)^2$ or Any intent to compare any other relevant values. (e.g. $(25\cdot6)^2 - (22\cdot7)^2$ with $(12\cdot8)^2$ or $\sqrt{[(12\cdot8)^2 + (22\cdot7)^2]}$ (with $25\cdot6$)	M1	The comparison attempted must show <u>both</u> intended calculations e.g. $(25\cdot6)^2$ AND $(12\cdot8)^2 + (22\cdot7)^2$ unless intention is to compare with a given side e.g. $\sqrt[4]{(12\cdot8)^2 + (22\cdot7)^2}$ with $25\cdot6$
Correct evaluation of value(s) to be compared. (e.g 'sight of 655·36 WITH 679·13' or 'sight of 140·07 WITH 163·84' or 'sight of 26·06 (WITH 25·6)')	A1	C.A.O. but allow evaluated answers to be given to the nearest whole number. e.g. 655 WITH 679.
Statement that it is NOT possible	A1	Allow FT if M1 awarded. If all marks gained ISW.
2. Alternative method 1		-
Intent to use two right-angled trig ratios using 2 different pairs of given sides	S1	i.e. In order to find the value of either the same angle OR two different angles, whilst sufficient to show that it isn't a right-angled triangle.
Correct right-angled trig ratio used twice , using 2 <u>different given sides</u> , in order to compare the values of the same angle or the sum of the two angles with 90°. 	M1	
Correct evaluation of value(s) to be compared.	A1	CAO
e.g. sight of any two of 30(°), 27.5(°) and 29.4(°)		Ratio Opp Adj Hyp Angle
OR sight of 30(°) and 60.58(°) (and the sum to be		Sin 12.8 25.6 30(°)
compared with 90°)		Cos 22.7 25.6 27.5(°)
		Tan 12.8 22.7 29.4(°)
		Sin 22.7 25.6 62.46(°)
		Cos 12.8 25.6 60(°)
		Tan 22.7 12.8 60.58(°)
Statement that it is NOT possible	A1	If comparing the sum of two angles (with 90°), the sum must be shown. Allow FT if M1 awarded. If all marks gained ISW.
2. Alternative method 2 (using the cosine rule)		NOTE The cosine rule is not on the intermediate tier specification, but as it is a common question, it may be seen by Higher tier candidates.
$(\cos A =) (12.8^2 + 22.7^2 - 25.6^2) / (2 \times 12.8 \times 22.7)$ (= 2377/58112 or 0.0409)	M2	M1 for $25.6^2 = 12.8^2 + 22.7^2 - 2 \times 12.8 \times 22.7 \times \cos A$
(A =) 87(.6557°)	A1	
Statement that it is NOT possible	A1	
		If all marks gained ISW.

Organisation and Communication	OC1	For OC1 condidates will be expected to:
Organisation and Communication	UCI	For OC1, candidates will be expected to:
		present their response in a structured way
		explain to the reader what they are doing at
		each step of their response
		 lay out their explanation and working in a
		way that is clear and logical
		 write a conclusion that draws together their
		results and explains what their answer
		means
Accuracy of writing.	W1	For W1, candidates will be expected to:
		show all their working
		make few, if any, errors in spelling,
		punctuation and grammar
		use correct mathematical form in their
		working
(a / c)	B1	use appropriate terminology, units, etc
3.(a) A ∩ B		
3.(b) B ^I	B1	Do to the control of
4		B0 if all four original numbers used.
Four numbers with a range of 10.	B1	
Four numbers with a total of 36.	B1	
Four numbers with a median of 8.	B1	
Possible answers for all three marks are		
5,5,11,15 or 5,6,10,15 or 5,7,9,15 or 5,8,8,15		
5. (number of females in Porth =) <u>90</u> × 128 360	M1	Or equivalent
OR (number of males in Porth =) 120 × 72		
360		
		Answers may be seen on the diagram.
(number of females in Porth =) 32	A1	An answer of 32 implies M1.
(number of males in Porth =) 24	A1	An answer of 24 implies M1.
()	,	7 aaa. a. a
(Probability from Porth =) <u>56</u> or equivalent ISW	A1	FT ('their 32' + 'their 24') /200 provided M1 gained.
200	,	Penalise incorrect notation −1. e.g. '56 in 200'.
6. $\sin(QPR) = 9.6$	M1	
16.7		
$(QPR =) \sin^{-1} (9.6/16.7) \text{ or } \sin^{-1} (0.57)$	m1	Implies M1.
(4.11) 5 (6.6, 16.1)		miphos min
= 35·1(°) or 35·09(°) or 35·089(°)	A1	Allow any answer that rounds to 35(°)
6. Alternative method.		
Correct use of 'two-step' method.	M2	A partial trigonometric method is M0.
$(x) = 35.1(^{\circ}) \text{ or } 35.09(^{\circ}) \text{ or } 35.089(^{\circ})$	A1	Allow any answer that rounds to 35(°)
7. $7x + 2y = (£)41.5(0)$ AND	B1	Allow use of other letters to denote variables.
4x + 3y = (£)29.75		B0 for using 4150 and 2975.
		ET (the in a greation of it of a great differents
Made at the altimate at a constability	N 4 4	FT 'their equations' if of equal difficulty.
Method to eliminate variable	M1	Allow 1 error in one term, not one with equal
(Attempt at equal coefficients and subtraction)		coefficients.
First variable found $y = (0) F$ and $y = (0) 2.05$	۸.4	CAO (for their equations if ET.)
First variable found $x = (£) 5$ or $y = (£) 3.25$.	A1	C.A.O. (for their equations if FT.)
Substitute to find the 2 nd variable.	m1	F.T. their '1 st variable'.
Second variable found.	A1	ET analyses about he since to the second second
		FT answers should be given to the nearest penny
		(rounded or truncated).
		If M0, award SC2 (with possible B1) for <u>both</u> answers
		of (£) 5 AND (£)3.25.

0	1	Comment avaluation was and ad an amount to intentity if
8.		Correct evaluation regarded as enough to identify if
		'too high' or 'too low'. If evaluations not seen accept 'too high' or 'too low'.
One correct evaluation $1 \le x \le 2$	B1	$x = 2x^3 + x - 10$ (or check $2x^3 + x = 10$)
2 correct evaluations $1.55 \le x \le 1.75$,	B1	1 -7
one < 0, one > 0.	Di	1.1 -6.238
2 correct evaluations $1.55 \le x \le 1.65$,	M1	1.2 -5.344
one < 0, one > 0.	IVII	1.3 -4.306
one ve, one ve.		1.4 -3.112 1.45 - 2.452
x = 1·6	A1	1.5 -1.75 1.55 -1.002
X 10	, , ,	1.6 -0.208 1.65 0.634
		1·7 1·526 1·75 2·468
		1.8 3.464 (1.62 0.123)
		1.9 5.618 (1.63 0.291)
		2 8 (1.64 0.461)
9. 85% ≡ 6154	B1	Accept any indication.
6154 × 100 OR 6154	M1	Implies the B1.
85 0.85		'
= 7240	A1	
10. x = 54(°)	B1	
Opposite angles (of a) cyclic quad. (add up to 180°).	E1	Dependent on an attempt at 180 – 126.
<u> </u>		
y = 108(°)	B1	FT 2 × 'their 54' only if less than 360°
Angle at the centre (is twice the angle at the	E1	Dependent on an attempt at 2 × 'their 54'.
circumference).		'
11. Correct enlargement	B2	Otherwise B1 for 2 correct vertices within a triangle.
		OR for 3 correct vertices in the correct location not
		joined to form the triangle
		OR triangle of correct shape, size and orientation in
		incorrect position
		OR consistent correct use of an incorrect negative
		scale factor.
12(a). $(9p+1)(9p-1)$	B2	B1 for (9p 1)(9p 1)
12(b). $(7t-2)(t+3)$	B2	B1 for (7t 2)(t 3)
13. Sight of 297.5 AND 6.5	B1	Accept 6 hours 30 minutes, but not 6.3 hours.
297.5 ÷ 6.5	M1	If other calculations shown, then the relevant
		calculation must be identified.
	1	Award M1 for their values provided 295≤d<300 AND
	1	6 <t≤7 (but="" 30="" 6="" hours="" minutes).<="" not="" td=""></t≤7>
= 45.77(km/h)	A1	CAO. Correct answer must be clearly identified.
14. $\sin BAD = (2 \times 70)/(8 \times 19)$ or equivalent	M2	Allow any unambiguous indication of angle BAD.
		M1 for the correct use of the formula when sinBAD is
	1	not the subject, for example: 70 = 1/2×8×19×sinBAD.
		110 110 000 100 0 0 0 0 0 0 0 0 0 0 0 0
(BAD=) 67(.08°)	A1	Allow any answer that rounds to 67(°).
		Allow any answer that rounds to 67(°).
(BAD=) 67(.08°) (Area of sector ABD=) 67(.08)/360×π×8²	A1 M1	Allow any answer that rounds to 67(°). Accept 292.9()/360× π ×8 ² OR 293/360× π ×8 ² for
		Allow any answer that rounds to 67(°). Accept 292.9()/360×π×8² OR 293/360×π×8² for the area of the major sector ABD.
		Allow any answer that rounds to 67(°). Accept 292.9()/360× π ×8 ² OR 293/360× π ×8 ² for
(Area of sector ABD=) 67(.08)/360×π×8 ²	M1	Allow any answer that rounds to 67(°). Accept 292.9()/360×π×8² OR 293/360×π×8² for the area of the major sector ABD. FT their derived or stated value of angle BAD.
(Area of sector ABD=) 67(.08)/360×π×8 ² Accept answers in the range 37.4(cm ²) to 37.5(cm ²)		Allow any answer that rounds to 67(°). Accept 292.9()/360×π×8² OR 293/360×π×8² for the area of the major sector ABD. FT their derived or stated value of angle BAD. Accept an answer in the range 163.5(cm²) to
(Area of sector ABD=) 67(.08)/360×π×8 ²	M1	Allow any answer that rounds to 67(°). Accept 292.9()/360×π×8² OR 293/360×π×8² for the area of the major sector ABD. FT their derived or stated value of angle BAD.

T 45		l But
15.	B2	B1 for any 1 or 2 correct.
Graph Equation $y = (x+1)(x-4)$		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$y = (x-4)^2$		
y = x(x+4)		
y = (x-1)(x+4)		
y = (x-2)(x+2)		
y = x(x-4)		
y = (x+1)(4-x)		
y = (1-x)(x+4)		
$y = (x+4)^2$		
16.(a) General sine curve with appropriate orientation	M1	Ignore curve shown for values x< -180° or x> 180°.
and position.		
-1 and 1 indicated on the y-axis, curve passes	A1	
through (-180°,0), (0°,0) and (180°,0) and		
approximately (-90°,-1) and (90°,1). 16(b)30(°) AND -150(°)	DO	A count ample dated an accurate
-30() AND -150()	B2	Accept embedded answers. Penalise further incorrect answer(s) -1.
		Ignore further answer(s) outside of the range.
		ignore ranger anower(e) calcide or are range.
		Award B1 for sight of an answer -30(°) or -150(°)
		(but not for sight of -30 as part of working).
17.(a) $\frac{3}{100} \times \frac{1}{99}$	M1	
$=\frac{3}{9900}\left(=\frac{1}{3300}\right)$ ISW	A1	Allow 3(.03)×10 ⁻⁴ OR 0.0003(03) or equivalent.
9900 \ 3300/		A0 for 0.0003(03)%.
		An unsupported 0.000303() gains M1A1.
		An unsupported 3/10000 OR 0.0003 gains no marks.
17(b) $2 \times \frac{3}{100} \times \frac{1}{99} \left(= \frac{6}{9900} = \frac{1}{1650} \right)$	M2	M1 for sight of $\left(\frac{3}{100} \times \frac{1}{99}\right) + \left(\frac{3}{100} \times \frac{1}{99}\right)$ OR
$+\frac{3}{100} \times \frac{2}{99} \left(= \frac{6}{9900} = \frac{1}{1650} \right)$		$\left(\frac{3}{100} \times \frac{1}{99}\right) + \left(\frac{1}{100} \times \frac{3}{99}\right) OR \ 2 \times \frac{3}{100} \times \frac{1}{99} OR$
OR $\frac{4}{100} \times \frac{3}{99}$		(100))) (100)))
100 ^ 99		$\left(\frac{3}{100} \times \frac{1}{99}\right) + \left(\frac{3}{100} \times \frac{2}{99}\right)$
$=\frac{12}{9900}\left(=\frac{1}{825}\right)$ ISW	A1	Allow 1(.21)×10 ⁻³ OR 0.001(21) or equivalent.
$=\frac{1}{9900} \left(=\frac{1}{825}\right) 13 $ 13 VV	- • •	An unsupported answer of 0.00121(2) gains M2A1.
		A0 for 0.001(21)%.
		SC1 for working with replacement leading to an
		answer of 12/10000 (3/2500) OR 0.001(2) [may be
		unsupported].

17 (h) Altamatica mathed	I	1
17.(b) Alternative method		
$1 - \left[\left(\frac{96}{100} \times \frac{95}{99} \right) + \left(2 \times \frac{3}{100} \times \frac{96}{99} \right) + \left(2 \times \frac{1}{100} \times \frac{96}{99} \right) \right]$	М2	M1 for sight of: $\left[\left(\frac{96}{100} \times \frac{95}{99} \right) + \left(2 \times \frac{3}{100} \times \frac{96}{99} \right) + \left(2 \times \frac{1}{100} \times \frac{96}{99} \right) \right] OR$ $1 - \left[\left(\frac{96}{100} \times \frac{95}{99} \right) + \left(\frac{3}{100} \times \frac{96}{99} \right) + \left(\frac{1}{100} \times \frac{96}{99} \right) \right]$
$= \frac{12}{9900} \left(= \frac{1}{825} \right) ISW$	A1	Allow 1(.21)×10 ⁻³ OR 0.001(21) or equivalent. An unsupported answer of 0.00121(2) gains M2A1. A0 for 0.001(21)%. SC1 for working with replacement leading to an answer of 12/10000 (3/2500) OR 0.001(2) [may be unsupported].
18. (cos CAB =) $(13^2 + 17^2 - 23^2) / (2 \times 13 \times 17)$	M2	M1 for $23^2 = 13^2 + 17^2 - 2 \times 13 \times 17 \times \cos CAB$
(=-71/442 OR -0.16(06)) (CAB =) 99(.2°)	A1	
		SC1 for the correct evaluation of either of the two other angles. ABC = 33(.9) and ACB = 46(.8).
19. Sight of $9x^2 - 6x - 6x + 4$ Sight of $x^2 + x + 2x + 2$	B1 B1	Or equivalent. Or equivalent.
$8x^2 - 15x + 2 = 0$	B1	FT expansions of equivalent level of difficulty
		provided B1 previously awarded.
		'= 0' required, but may be implied by an attempt to use the quadratic formula or if $a = 8, b = -15$,
		c=2 used in the quadratic formula.
$x = \frac{-(-15) \pm \sqrt{(-15)^2 - 4 \times 8 \times 2}}{2 \times 8}$	M1	This substitution into the formula must be seen for M1. FT 'their derived quadratic equation' equated to zero of equivalent difficulty $(a, b \text{ and } c \text{ must be non-zero})$. Allow one slip in substitution for M1 only , but must be correct formula.
$x = \frac{15 \pm \sqrt{161}}{16}$	A1	Can be implied from at least one correct value of \boldsymbol{x} evaluated.
x = 1.73 with $x = 0.14$ (answers to 2dp)	A1	CAO for their quadratic equation but not if complex
		roots.
		M0A0A0 if trial and improvement used or for unsupported answers.
20. Volume scale factor:		May be seen in parts.
$\left(\sqrt{199/47}\right)^3$ (=8.712) OR $\left(\sqrt{47/199}\right)^3$ (=0.114)	B2	Award B1 for a linear scale factor:
or equivalent.		$\sqrt{(199/47)}$ (= 2.057) OR $\sqrt{(47/199)}$ (= 0.485)
·		or equivalent OR Award B1 for (199/47) ³ (= 75.904) OR
3	B 4 4	$(47/199)^3$ (= 0.013).
Volume of larger solid 350 $\times (\sqrt{199/47})^3$	M1	
OR $350 \div \left(\sqrt{47/199}\right)^{\circ}$ or equivalent.		
or equivalent.		
3049(.305cm ³)	A1	CAO. Not from premature approximation.