

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 1 (FOUNDATION)
3300U10-1

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE Mathematics	√	Mark	
Unit 1: Foundation Tier Summer 2017	•	Mark	Comment
1. (a) 50 004		B1	
1. (b) 80(p)		B2	B1 for 720(p) ÷ 9 or (£)0.8(0)(p) or £80
1. (c) 4 and 5		B2	B1 for at least two different pairs of numbers which add to 9 OR B1 for at least two different pairs of numbers which have a product of 20 OR B1 for one pair that adds to 9 and one pair that has a product of 20.
2. Evidence of counting squares 81 – 91 (cm²)		M1 A1	
3.		B2	B1 for all 4 correct squares and no more than 2 extra squares OR B1 for 3 correct squares and no more than 1 incorrect squares OR B1 for 2 correct squares and no incorrect squares
4. (a) obtuse		B1	
4 (b) cuboid		B1	
5. (a) Dragons 35 Ospreys 45 Scarlets 40		В3	B2 for any two correct entries OR any one correct entry with evidence of correct scale indicated by at least one correct value and no incorrect value B1 for any one correct entry OR correct scale OR sight of '1 square = 5 pupils' OR sight of '2 squares = 10 pupils'
5. (b) 50/170 or equivalent ISW		B2	B1 for a numerator of 50 in a fraction less than 1. B1 for a denominator of 170 in a fraction less than 1. B1 for use of words such as '50 out of 170', '50 in 170' or '50:170'. If words and correct notation seen, then ignore the words.

	1	ı	
6. (a) A (3, 2) B (1, -4)		B1 B1	
6. (b) C (2, -1)		B2	B1 for a clear indication of the position of C Alternative method FT 'their coordinates' for A and B $([x_1 + x_2]/2, [y_1 + y_2]/2)$ M1 Correct evaluation A1
7. (a) (i) (x=) 8		B1	Accept embedded answers Mark final answer
7. (a) (ii) (y=) 64		B1`	Accept embedded answers Mark final answer
7.(b) 4k		B1	
8. (a) 81		B1	
8.(b) 84		B1	
9. 10.3 cm 46° 59		B1 B1 B1	± 2 mm ± 2° ± 2° If B3 awarded, penalise -1 if the triangle is incomplete OR if a ruler is not used
10.(Number of circles on the length=)100 ÷ 5 (=20) OR (Number of circles on the width =)30 ÷ 5 (=6)	✓	M1	Accept either 5 x 20 (=100) OR 5 x 6 (=30).
(Number of circles =) 6×20 120	✓	m1 A1	FT 'their 6' and 'their 20' if M1 awarded CAO
	✓	OC1	Organisation and Communication. For OC1, candidates will be expected to: • present their response in a structured way • explain to the reader what they are doing at each step of their response • lay out their explanation and working in a way that is clear and logical
	✓	W1	Accuracy of writing. For W1, candidates will be expected to: • show all their working • make few, if any, errors in spelling, punctuation and grammar • use correct mathematical form in their working • use appropriate terminology, units, etc

	1 50	
11.(a) 1 and -5	B2	B1 for 1. B1 FT 'their 1' – 6.
11.(b) - 6 + 70	B1	B1 for sight of – 6 OR 70 (but not –70).
= 64	B1	B0 for −6x + 70y. C.A.O. Mark final answer.
12. Showing (0·4), 0·15 and 0·35 OR 40%, (15%) and 35% OR 8/20, 3/20 and (7/20) OR three correct calculations for a common amount.	B2	B2 for all correct decimals, OR all correct %, OR all correct fractions with a common denominator, OR correct work using a common amount, OR a valid combination that allows full comparison. B1 for one correct conversion that still allows a full comparison. (i.e. allow one error in attempt at common format.)
15% 7/20 0-4 in order	B1	Allow any unambiguous indication. F.T. 'their work' if at least B1 gained. Unsupported correct answer gains B1 only.
13. Correct enlargement.	B2	Allow any orientation. B1 for one side correctly enlarged. SC1 for an enlargement by a factor of 2 or 4.
14.(a) 1/6	B1	
14.(b) 10	B1	
14.(c) 6 blue 6 yellow 3 pink	B1	
15. (Team A) 12 (Team B) 3	B2	B1 for values that satisfy A - B = 9 OR A = 4 x B. e.g. final working line of 10 and 1 (or 8 and 2) would be awarded B1 if not contradicted in the answer space. SC1 for reversed answer A = 3 and B = 12.
16. (David – Hr Jane – Rh Mary – P) David – Hr Jane – P Mary – Rh David – Rh Jane – Hr Mary – P David – Rh Jane – P Mary – Hr David – P Jane – Hr Mary – Rh David – P Jane – Rh Mary – Hr	B2	Allow any unambiguous notation e.g. 'DH'. For all other 5 different combinations. Do not penalise repeats. B1 for 3 or 4 other different combinations. B0 otherwise.

17.(a) $x + 2x + 3x + 90 = 360$ or equivalent $6x = 270$	✓ ✓ ✓	M1	Allow M1 for attempting sum of a + b + c + 90 with ratio a:b:c = 1:2:3 and clearly using trial and improvement to aim for a total of 360.
$x = \frac{270}{6}$	'	A1	F.T. from ax = b.
= 45	✓	A1	Allow SC2 for an answer of 15 (from '= 180')
17.(b) Correct use of 2x = 90(°) 'Yes' AND correct justification. e.g. 'Yes because of interior angles',		B1 E1	F.T. 'their value of x'. Must be used in justification. Dependent on B1 with F.T. justification.
'Yes as lines are perpendicular to the base' 'Both A and B are 90'.			Alternative method for the B1 mark Use of $3x = 135(°)$ AND $x = 45(°)$
18(a) $\frac{40 \times 30}{200}$ OR $\frac{41 \times 30}{200}$		M1	
200 200 = 6 OR 6.15 or 6		A1	Unsupported answer (M0) is also A0.
18.(b) (i) 454680		B1	
18.(b) (ii) 842		B1	
18.(b) (iii) 5·4		B1	
19. (Use of area of PBCQ =) 52 - 20 (= 32 cm ²) (Area of PBCQ =) 8 x f = 32 f = 4 (Area of APQD =) 4 x g = 20 g = 5		B1 M1 A1 M1 A1	Answers /working may be seen on diagram. F.T. 'their derived 32' but not 52 [B1M1 implied by $8f = 32$] C.A.O. (implies B1M1A1) F.T. 'their f'. Alternative method $f \times (g + 8) = 52$
			g=5 A1

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 2 (FOUNDATION)
3300U20-1

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

	GCSE Mathematics Unit 2: Foundation Tier Summer 2017	Mark	MARK SCHEME Comments
1.	778 905 35 645	B1 B1 B1 B1	
2.	> < < < <	B2	For all 4 correct. B1 for any three correct. Penalise once only for use of ≤ or ≥.
3.(a)(i)	Circle radius 5cm ± 2mm	B1	Use overlay. Continuous line that is drawn with a pair of compasses. Condone failure to use × as the centre.
3.(a)(ii)	10 cm or equivalent	B1	F.T. their circle drawn with a pair of compasses. Units required for B1.
3.(b) 4.	Equilateral triangle 5, 9, 10	B1 B3	Answers in the spaces provided take precedence. B2 for meeting 3 of the 4 conditions: • the three numbers are different • one number is a square number • the other two numbers are factors of 20 • the sum of the three numbers is 24 B1 for meeting 2 conditions OR for listing either three different square numbers or three different factors of 20.
5.(a)	3	B1	
5.(b)	Square	B1	Accept regular quadrilateral.
6.(a)	5530	B2	B1 for 5529(.411) OR B1 for 5520
6.(b)	32.36	B2	B1 for 32.35(889) OR B1 for 32.4
NO, v 4 min	tion to halve 9 minutes 18 seconds OR double 4 minutes 48 seconds with sight of utes 39 seconds OR 9 minutes 36 seconds, or 279 (seconds) AND 288 (seconds) or 558 (seconds) AND 576 (seconds)	M1 A1	Accept equivalent statements e.g. Eira is wrong Allow incorrect notation for time e.g. 4.39, 9.36 (use of decimal points) Alternative method 1 Correctly finding the difference between the two times as 4 minutes 30 seconds OR 270 seconds M1 NO, with comparison e.g. 4 minutes 30 seconds is less than 4 minutes 48 seconds OR 288 seconds is more than 270 seconds A1 Alternative Method 2 Converting both times to seconds, before dividing one quantity by the other M1 NO, with sight of 2(.06) OR 0.4(84375) A1 If no marks, award SC1 for attempting to find the difference between the two times and comparing

GCSE Mathematics		
Unit 2: Foundation Tier	Mark	MARK SCHEME
Summer 2017		Comments
9. Odd numbers 1 3 2 5 4	B2	B2 for all fully correct Award B1 for 3 or 4 correct Any duplicates are marked as incorrect.
10. (Width of square = $56 \div 4 =$) 14 (cm)	B1	
(Area of square =) 14 ²	M1	F.T. 'their width', provided ≠ 56.
$= 196 \text{ (cm}^2)$	A1	
Organisation and Communication	OC1	For OC1, candidates will be expected to: • present their response in a structured way • explain to the reader what they are doing at each step of their response • lay out their explanations and working in a way that is clear and logical
Accuracy of writing.	W1	For W1, candidates will be expected to: • show all their working • make few, if any, errors in spelling, punctuation and grammar • use correct mathematical form in their working • use appropriate terminology, units, etc.
11.(a) 3	B1	
11.(b) unlikely	B1	
11.(c)	B1	Any indication of 1/4 to 1/2 exclusive.
12.(a) $0.39 \times (£)576$ or equivalent $= (£)224.64$ ISW	M1 A1	Do not accept approximating e.g. 10%=£58 etc. Allow £224.64p and 22464p but not 22464.
12.(b) 43	B2	B1 for sight of $42.8()$ or 42.9 or 42
12.(c) 40	B1	Accept embedded answers e.g. 0⋅25 x 40 = 10.
12.(d) $\underline{1}$ or equivalent fraction 12	B1	Mark final answer. B0 for <u>0.5</u> , 0.083 etc. 6
12.(e) <u>10</u> 12	B1	
13. FALSE TRUE TRUE TRUE FALSE	В3	For all 5 correct. B2 for 4 correct. B1 for 3 correct.
14. (7 × 3 =) 21	B2	B1 for sight of 7 x a (or a x 7) OR b x 3 (or 3 x b) OR 7 OR 3 unambiguously identified.
15.(a) 15	B1	
15.(b) 5	B1	Allow unambiguous indication of an answer of 5.

GCSE Mathematics Unit 2: Foundation Tier	Mark	MARK SCHEME
Summer 2017	Mark	Comments
16. 8, 15 and 16 OR 9, 13 and 17	B2	All three numbers must be less than 25. B1 for three numbers with a range of 8.
OR 10, 11 and 18.		B1 for three numbers whose total = 39.
17.(a) -3, -1 and 1	B2	B1 for any two correct in the correct positions OR B1 for -5, -3 and -1 OR B1 for -1, 1 and 3.
17.(b) 4n + 3	B2	B1 for sight of 4n or n4 (but not 4n ^k k≠1). Mark final answer.
18.(a) 0·26	B1	B0 for 13/50, 26/100 etc.
18.(b) $\underline{7} \times 3000$ or equivalent 50	M1	Only allow misread if 300 or 30000 used.
= 420	A1	420/3000 gains M1A0. Mark final answer.
18.(c) $\frac{1}{6} \times 3000$ or equivalent	M1	Only allow misread if 300 or 30000 used.
= 500	A1	500/3000 gains M1A0. Mark final answer. Allow M1A0 for 480 or 510 or 498 as implying
		1/6 to be 0·16 or 0·17 or 0·166.
19. (Angle DOC or exterior angle =) $\frac{360}{5}$	M1	Answers/working may be seen on diagram.
= 72(°)	A1	Sight of 72 (even x = 72) gains M1A1.
$(x =) \frac{180 - 72}{2}$	M1	FT 'their 72' (but not 60°).
= 54(°)	A1	
		Alternative method (Sum of interior angles =) $(5-2) \times 180^\circ$ or equivalent $= 540(^\circ)$ A1 FT 'their interior angle sum' (\neq 900) $(x =) \frac{1}{2} \times (540 \div 5)$ M1 $= 54(^\circ)$ A1
20. (BC =) $(24 - 2x7)/2$ (BC =) $5(cm)$ (Area CDEF =) $(7 + 3) \times (9 - 5)$ or equivalent.	M1 A1 M1	Lengths may be seen on diagram. A clearly shown incorrect method for finding CD is M0A0 otherwise CD=4(cm) implies this M1A1. F.T. 'their derived 5' OR F.T. (7 + 3) × 'their stated or shown length CD (<9)' 2 Allow M1 for correct intent e.g. '7 + 3 × 4 ÷ 2' then
$= 20 \text{ (cm}^2)$	A1	A0. Ignore any further attempt to find total area of whole shape if area of CDEF seen.

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 1 (INTERMEDIATE)
3300U30-1

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE MATHEMATICS			
Unit 1 : Intermediate Tier	✓	Manie	MARK SCHEME
Summer 2017	•	Mark	Comments (Page 1)
1.(a) 1 and -5		B2	B1 for 1. B1 F.T. for 'their 1' – 6.
1.(b) - 6 + 70		B1	B1 for sight of – 6 OR 70 (but not –70).
			B0 for −6x + 70y.
= 64		B1	C.A.O. Mark final answer.
1.(c) 6k – 5m		B2	Must be an expression for B2.
			B1 for sight of (+)6k OR sight of – 5m.
			B1 for 6k + – 5m.
2. Showing (0·4), 0·15 and 0·35		B2	Mark final answer.
2. Showing (0·4), 0·15 and 0·35 OR 40%, (15%) and 35%		B2	B2 for all correct decimals, OR all correct %, OR all correct fractions with a common denominator,
OR 40%, (13%) and 35% OR 8/20, 3/20 and (7/20)			OR correct work using a common amount,
OR three correct calculations for a common			OR a valid combination that allows full comparison.
amount.			Or a valid combination that allows full comparison.
amouni			B1 for one correct conversion that still allows a full
			comparison. (i.e. allow one error in attempt at
			common format.)
15% 7/20 0⋅4 in order		B1	·
			Allow any unambiguous indication.
			F.T. 'their work' if at least B1 gained.
		3	Unsupported correct answer gains B1 only.
3.(a) Correct reflection.		B1	B0 if additional shapes.
3.(b)		B2	Use overlay.
Correct enlargement.		DZ	Allow any orientation. B1 for one side correctly enlarged.
			SC1 for an enlargement by a factor of 2 or 4.
3.(c) Correct translation.		B1	COT for all chiargement by a factor of 2 of 1.
4.(a) 1/6		B1	
4.(b) 10		B1	
4.(c) 6 blue		B1	
6 yellow			
3 pink			
5. (Team A) 12 (Team B) 3		B2	B1 for values that satisfy
			$A - B = 9$ OR $A = 4 \times B$.
			e.g. final working line of 10 and 1 (or 8 and 2)
			would be awarded B1 if not contradicted in the
			answer space.
6(a) (David – Hr Jane – Rh Mary – P)	 		SC1 for reversed answer A = 3 and B = 12. Allow any unambiguous notation e.g. 'DH'.
6(a) (David – Hr Jane – Rh Mary – P)			Allow arry unambiguous notation e.g. DH.
David – Hr Jane – P Mary – Rh		B2	For all other 5 different combinations.
David – Rh Jane – Hr Mary – P			Do not penalise repeats.
David – Rh Jane – P Mary – Hr			B1 for 3 or 4 other <u>different</u> combinations.
David – P Jane – Hr Mary – Rh			B0 otherwise.
David – P Jane – Rh Mary – Hr			
6.(b) <u>4</u> or equivalent. ISW		B2	2/3 or 4/6 gains B2 regardless of their list.
6			B1 for x/6 (x<6) OR 4/y (y>4)
			F.T. 'their list' (using <u>different</u> combinations) if at
			least 4 to choose from for B2 or B1 as appropriate.

GCSE MATHEMATICS Unit 1 : Intermediate Tier	 	Mark	MARK SCHEME
Summer 2017		Mark	Comments (Page 2)
7(a). $x + 2x + 3x + 90 = 360$ or equivalent.	√	M1	Allow M1 for attempting sum of a + b + c + 90 with ratio a:b:c = 1:2:3 and <u>clearly</u> using trial and improvement to aim for a total of 360.
$6x = 270 x = \frac{270}{6}$	✓ ✓	A1 A1	F.T. from ax = b.
= 45	✓	A1	Allow SC2 for an answer of 15 (from '= 180')
7(b) Correct use of 2x = 90(°) 'Yes' AND correct justification. e.g. 'Yes because of interior angles', 'Yes as lines are perpendicular to the base' 'Both A and B are 90'.		B1 E1	F.T. 'their value of x'. Must be used in justification. Dependent on B1 with F.T. justification. Alternative method for the B1 mark Use of $3x = 135(^{\circ})$ AND $x = 45(^{\circ})$
8(a) 40 × 30 OR 41 × 30 200 200		M1	03e 01 0X = 100() AND X = 40()
= 6 OR 6·15 or 6 8.(b) (i) 454 680		A1 B1	Unsupported answer (M0) is also A0.
8.(b) (ii) 842		B1	
8.(b) (iii) 5·4 9.		B1	
(Use of area of PBCQ =) 52 – 20 (= 32 cm ²) (Area of PBCQ =) 8 × f = 32 f = 4	✓ ✓	B1 M1	Answers /working may be seen on diagram. F.T. 'their derived 32' but not 52 [B1M1 implied by 8f = 32] C.A.O. (implies B1M1A1)
(Area of APQD =) $4 \times g = 20$ g = 5	✓ ✓	M1 A1	F.T. 'their f'.
			Alternative method $f \times (g + 8) = 52$ M1 [fg + 8f = 52]
			fg = 20 M1 [M2 implied by 20 + 8f = 52 or 8f = 32]
			f = 4 A1 C.A.O.
	√	OC1	Organisation and Communication. For OC1, candidates will be expected to: • present their response in a structured way • explain to the reader what they are doing at each step of their response • lay out their explanation and working in a way that is clear and logical
	✓	W1	Accuracy of writing. For W1, candidates will be expected to: • show all their working • make few, if any, errors in spelling, punctuation and grammar • use correct mathematical form in their working • use appropriate terminology, units, etc

GCSE MATHEMATICS Unit 1 : Intermediate Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 3)
10.(a) $1 - (0.4 + 0.25 + 0.2)$		M1	
= 0.15 or equivalent.		A1	
10.(b) 0.25 + 0.2		M1	
$= 0.45 \text{ or equivalent.}$ $10.(c) \qquad 0.4 \times 0.4$		A1	
· ·		M1 A1	
= 0.16 or equivalent. $11.(a) -4$		B1	
, ,			E.T. (their (2, 4)) Allow L (1/ a areall acuses)
11.(b) At least 6 correct plots and no incorrect plot. A smooth curve drawn through their plots.		P1 C1	F.T. 'their (3,-4)'. Allow ± '½ a small square'. F.T. 'their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (± '1 small square horizontal or vertical)'.
11.(c) Line $y = -3$ drawn		B1	
1-4 AND 3-6		B1	F.T. intersection of 'their curve' with 'their $y = -3$ ' only if exactly two points of intersection. Allow \pm '1 small square'.
12.(a) For a method that produces 2 prime factors from the set {2, 2, 5, 5, 7} before the 2 nd error.		M1	
2, 2, 5, 5, 7		A1	C.A.O. For sight of the five correct factors (Ignore 1s)
$2^2 \times 5^2 \times 7$		B1	F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow (2²)(5²)(7) and 2².5².7 Do not allow 2²,5²,7. Inclusion of 1 as a factor gets B0.
12.(b) Any reference to the index being an odd number.		E1	
e.g. 'power must be even', '25 is odd' etc.			Do not accept e.g. 'should be 2 ²⁴ ', 'it isn't even'.
13.(a) $y = -x + 2$		B1	
13.(b) (2, 5)		B1	
13.(c) <u>2</u> 3		B1	

GCSE MATHEMATICS Unit 1 : Intermediate Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 4)
14. 7		В3	B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.
15. (volume) Area Length None Area Volume		В3	Must use the terminology given in the question. B3 for all 5 correct. B2 for 3 or 4 correct. B1 for 2 correct. B0 otherwise.
16.(a)			Any 'blank space' to be taken as 0.
$\begin{pmatrix} C & & L \\ & & \begin{pmatrix} 7 & 6 \end{pmatrix} & & \end{pmatrix}$		B1 B1	For the 4 in correct position. For the 7 in correct position.
4		B1	For the 3 AND 6 in correct positions. OR two of the following conditions met (i) 10 - 'their (non-zero) 7' (ii) 13 - 'their (non-zero) 7'. (iii) total of four numbers = 20. SC1 for all regions correct but using alternative notation e.g. tallies.
16.(b) 9/20 or equivalent. ISW		B2	B1 for a numerator of 9 (F.T. 'their 3' + 'their 6') in a fraction < 1. B1 for a denominator of 20 in a fraction < 1.
17. Method to eliminate variable e.g. equal coefficients with intention to appropriately add or subtract'	✓	M1	No marks for 'trial and improvement'. Allow 1 error in one term, not one with equal coefficients.
First variable found $x = 5$ or $y = -2$. Substitute to find the 2^{nd} variable. Second variable found.	✓ ✓ ✓	A1 m1 A1	C.A.O. F.T. their '1 st variable'.
18. 5.64×10^5		B2	B1 for correct answer not in standard form e.g. 564000 , or 56.4×10^4 . Allow B1 for 5.6×10^5 .
19. 4 <i>n</i> – 8 > <i>n</i> + 17	√ ✓	B2	If not B2, allow B1 for sight of $4n-8$ AND $n+17$ in an inequality.
3n > 25	✓	B1	F.T. from 'their <u>inequality</u> ', if of equivalent difficulty.
n > 25/3	✓	B1	F.T. from 'their an>b' or 'their an <b' a≠1.<="" provided="" td=""></b'>
(least value of <i>n</i> =) 9	✓	B1	F.T. from their ' $n > 25/3$ ', provided n > 0. An answer of 9 without showing $4n - 8 > n + 17$ gains B3 only. Accept 'Rashid had 9 (sheep)'.

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 2 (INTERMEDIATE)
3300U40-1

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE MATHEMATICS Unit 2 : Intermediate Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 1)
1.(a) $0.39 \times (£)576$ or equivalent $= (£)224.64$ ISW		M1 A1	Do not accept approximating e.g. 10%=£58 etc. Allow £224.64p and 22464p but not 22464.
1.(b) 43		B2	B1 for sight of $42.8()$ or 42.9 or $42.6/7$ or $300/7$. Allow SC1 for 42. B0 for $300 \div 7$.
1.(c) 40		B1	Accept embedded answers e.g. $0.25 \times 40 = 10$.
1.(d) <u>1</u> or equivalent fraction 12		B1	Mark final answer. B0 for <u>0.5</u> , 0.083 etc. 6
1.(e) <u>10</u> 12		B1	
2. FALSE TRUE TRUE TRUE FALSE		В3	For all 5 correct. B2 for 4 correct. B1 for 3 correct.
3. (7 × 3 =) 21		B2	B1 for sight of 7 × a (or a × 7) OR b × 3 (or 3 × b) OR 7 OR 3 unambiguously identified.
4.(a) 5		B1	Allow unambiguous indication of an answer of 5.
4.(b) 3 (n + 7) or 3 × (n + 7) or (n + 7)3 or (n + 7) ×3 or 3n + 21		B2	B1 for $n + 7 \times 3$ OR $3 \times n + 7$ (bracket omitted). Penalise -1 any further incorrect work, e.g. ' $(n + 7) \times 3 = n + 21$ ' is B2 - 1 = B1, ' $n + 7 \times 3 = n + 21$ is B1 - 1 = B0, ' $3 \times n + 7 = 3n + 7$ ' is B1 - 1 = B0.
5. 8, 15 and 16 OR 9, 13 and 17 OR 10, 11 and 18.		B2	All three numbers must be less than 25. B1 for three numbers with a range of 8. B1 for three numbers whose total = 39.
6.(a) -3, -1 and 1		B2	B1 for any two correct in the correct positions OR B1 for -5, -3 and -1 OR B1 for -1, 1 and 3.
6.(b) 4n + 3		B2	B1 for sight of 4n or n4 (but not 4n ^k k≠1). Mark final answer.
7.(a) 0·26		B1	B0 for 13/50, 26/100 etc.
7.(b) $\underline{7} \times 3000$ or equivalent 50		M1	Only allow misread if 300 or 30000 used.
= 420		A1	420/3000 gains M1A0. Mark final answer.
7.(c) $\frac{1}{6} \times 3000$ or equivalent		M1	Only allow misread if 300 or 30000 used.
= 500		A1	500/3000 gains M1A0. Mark final answer. Allow M1A0 for 480 or 510 or 498 as implying 1/6 to be 0·16 or 0·17 or 0·166.

GCSE MATHEMATICS Unit 2 : Intermediate Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 2)
8. (Angle DOC or exterior angle =) 360(°)	√	M1	Answers/working may be seen on diagram.
5 = 72(°)	✓	A1	Sight of 72 (even x = 72) gains M1A1.
$(x =) \frac{180 - 72}{2}$	√	M1	FT 'their 72' (but not 60°).
= 54(°)	✓	A1	Alternative method (Sum of interior angles =) $(5-2) \times 180^\circ$ or equivalent $= 540(^\circ)$ A1 FT 'their interior angle sum' (\neq 900) $(x =) \frac{1}{2} \times (540 \div 5)$ M1 $= 54(^\circ)$ A1
9. $5x + 2y$ $9x + y$		В3	B1 for 5x + 3y B1 for 5x + 2y Bottom circle F.T. 'their 5x + 2y' + 4x – y for B1. Penalise 'correct' but unsimplified expressions –1 once only.
10. $(BC =) (24 - 2x7)/2$ $(BC =) 5(cm)$ $(Area CDEF =) (7 + 3) \times (9 - 5)$ or equivalent.	✓ ✓ ✓	M1 A1 M1	Lengths may be seen on diagram. A clearly shown incorrect method for finding CD is M0A0 otherwise CD=4(cm) implies this M1A1. F.T. 'their derived 5' OR F.T. (7 + 3) × 'their stated or shown length CD (<9)'
= 20 (cm ²)	✓	A1	Allow M1 for correct intent e.g. '7 + 3 × 4 ÷ 2' then A0. Ignore any further attempt to find total area of whole shape if area of CDEF seen.
Organisation and Communication.	√	OC1	For OC1, candidates will be expected to:
Accuracy of writing.	√	W1	For W1, candidates will be expected to: • show all their working • make few, if any, errors in spelling, punctuation and grammar • use correct mathematical form in their working • use appropriate terminology, units, etc.

GCSE MATHEMATICS Unit 2 : Intermediate Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 3)
11.(a) 25·1		B2	B1 for 25(⋅).
11.(b) -14·3		B2	B1 for 14·3 OR −14·2()
12. $3x - 2 + 2x + 1 + 5x - 9 = 180$	√	M1	
10x = 190 x = 19	√ ✓	A1 A1	F.T. from ax = b. Allow all 3 marks for x = 19.
Substituting $x = 19$ into at least one expression. $(3x - 2 =) 55(^{\circ}) (2x + 1 =) 39(^{\circ}) (5x - 9 =) 86(^{\circ})$ (So not a right-angled triangle)	✓ ✓	M1 A1	If $x \ne 19$ F.T. 'their <u>derived</u> value of x'. F.T. for this A1 if $x \ge 2$. Any two of these expressions correctly evaluated with no incorrect evaluation, provided the sum of the two found is > 90. (statement not required)
13.			Correct evaluation regarded as enough to identify if negative or positive. Evaluations can be rounded or truncated. If evaluations not seen condone 'too high' or 'too low'. Look out for testing for $x^3 - 2x = 45$. $\frac{x}{x^3 - 2x - 45}$
One correct evaluation $3 \le x \le 4$ 2 correct evaluations $3.65 \le x \le 3.85$, one < 0, one > 0. 2 correct evaluations $3.65 \le x \le 3.75$, one < 0, one > 0. x = 3.7	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	B1 B1 M1	3 -24 3·1 -21·409 3·2 -18·632 3·3 -15·663 3·4 -12·496 3·5 -9·125 3·55 -7·361 3·6 -5·544 3·65 -3·672 3·7 -1·747 3·74 -0·166
14. $16.9^2 = 6.5^2 + MN^2$ or equivalent.		M1	$\frac{3.8}{3.9}$ $\frac{2.272}{6.519}$ $\frac{3.75}{3.85}$ $\frac{0.234}{4.366}$ $\frac{4}{4}$ $\frac{11}{4}$ Mark final answer.
$(MN^2) = 243.36 \text{ or } (MN) = \sqrt{243.36}$		A1	
(MN =) 15.6(cm) 15. Correct construction of 90° at point B.		A1 B2	C.A.O. With sight of accurate 'method arcs'. e.g. (i) AB extended with arcs either side of B on extended line AB (or line AB extended by 7cm) AND arcs above or below point B). (ii) construction of 60°, 120° and a bisection. B1 for complete method but line not drawn.
Correct construction of angle BAC = 60°.		B1	With sight of accurate 'method arcs' and line drawn. If all three marks gained but triangle not completed penalise -1 mark. (Treat reversal of angles as a misread.)

GCSE MATHEMATICS Unit 2 : Intermediate Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 4)
16. $\frac{QR}{18} = \tan 24(^{\circ})$		M1	OR $\frac{QR}{\sin 24 \sin 66}$
QR = 18 x tan24(°)		m1	$QR = \frac{18 \times \sin 24}{\sin 66}$
= 8(·01)(cm)		A1 3	C.A.O.
17.(a) 0·3(0) on 'box C branch'.		B1	
17.(b) Sight of 0.45 × 0.7 OR 0.25 × 0.4 OR 0.3 × 0.8		B1	FT 'their 0·3' from box C branch, only if, between 0 and 1.
$0.45 \times 0.7 + 0.25 \times 0.4 + 0.3 \times 0.8$ $(0.315 + 0.1 + 0.24)$		M1	
= 0.655 or 131/200 or equivalent ISW		A1	Provided less than 1.
17.(c) $\frac{1}{3}$		B1	F.T. for the fraction that is the nearest to 1– 'their 0.655' provided 0<'their 0.655'<1 Correct answer of 1/3 gains B1 regardless.
18.(a) $x(x^2 - 5)$		B1	
18.(b) $2x^2 + 5x - 12$		B2	B1 for $2x^2 + kx - 12$ OR $2x^2 + 5x + k$
18.(c) $(x-7)(x+4)$ ISW		B2	B1 for (x 7)(x 4).
19.(a) $3y = 2x + 7$		B1	
19.(b) $y = -\underline{x} + 3$		B1	
20. 360 – 2 × 37 = 286(°)		M1 A1	SC1 for sight of 74(°).
21. $\frac{BD \times 5}{2} = 35$	√	M1	
BD = 14(cm)	✓	A1	May be seen on the diagram. Note: If they state that AB = 14cm, or indicate on the diagram that AB = 14cm then it is M0A0 as an incorrect method used for area of a right-angled triangle (however an unattached 14cm has to be given the benefit of the doubt and be awarded M1A1).
Cos x = $\frac{14}{32}$ x = $\cos^{-1} 0.4375$ x = 64(°)	✓ ✓ ✓	M1 m1 A1	FT 'their stated or shown length BD'. FT has to use 'their BD' (not CD). Accept answer rounded or truncated. [e.g. if their BD = 7, then accept 77(·36°)]
			[c.g. ii ticii bb = 1, ticii decept 11(50)]

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 1 (HIGHER)
3300U50-1

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

Unit 1 : Higher Tier Summer 2017	GCSE MATHEMATICS			
1.(a) 0-25 + 0-2		✓	Mark	
2.(a)	Summer 2017			Comments (Page 1)
1.(b) 0.4 x 0.4	1.(a) 0·25 + 0·2		M1	
2.(a) -4 2.(b) At least 6 correct plots and no incorrect plot. A smooth curve drawn through their plots. 2.(c) Line y = -3 drawn 1.4 AND 3.6 3.(a) For a method that produces 2 prime factors from the set (2, 2, 5, 5, 7) before the 2 nd error. 2, 2, 5, 5, 7 2 ² x 5 ² x 7 3.(b) Any reference to the index being an odd number. e.g. power must be even, '25 is odd' etc. 4.(a) y = -x + 2 4.(b) (2, 5) 4.(c) 2 3. B1 F.T. their (3,-4)'. Allow ± '½ a small square'. F.T. their plots. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (± '1 small square horizontal or vertically). P1 F.T. intersection of 'their curve' with 'their y = -3' only if exactly two points of intersection. Allow ± '1 small square'. A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow (2 ²)(5 ²)(7) and 2 ² ·5 ² . To not allow 2 ² ·5	= 0.45 or equivalent.			
2.(a) -4 2.(b) At least 6 correct plots and no incorrect plot. A smooth curve drawn through their plots. 2.(c) Line y = -3 drawn 1.4 AND 3.6 3.(a) For a method that produces 2 prime factors from the set {2, 2, 5, 5, 7} before the 2 nd error. 2, 2, 5, 5, 7 2 ² x 5 ² x 7 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) y = -x + 2 4.(b) (2, 5) B1 4.(c) 2/3 3. B2 for 5. B1 P1 F.T. 'their (3,-4)'. Allow ± "% a small square'. F.T. 'their (3,-4)'. Allow ± "% a small square'. F.T. 'their r plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (± '1 small square horizontal or vertical)'. B1 F.T. intersection of 'their curve' with 'their y = -3' only if exactly two points of intersection. Allow ± '1 small square'. M1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow (2 ²)(5 ²)(7) and 2 ² .5 ² .7. Inclusion of 1 as a factor gets B0. E1 Do not accept e.g. 'should be 2 ^{24'} , 'it isn't even'. 4.(c) 2/3 B1 4.(c) 2/3 B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				
2.(b) At least 6 correct plots and no incorrect plot. A smooth curve drawn through their plots. 2.(c) Line y = -3 drawn 1.4 AND 3.6 B1 B1 F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (±'1 small square horizontal or vertical)'. F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (±'1 small square horizontal or vertical)'. F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (±'1 small square horizontal or vertical)'. F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (±'1 small square horizontal or vertical)'. HI F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (±'1 small square horizontal or vertical)'. HI F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (±'1 small square horizontal or vertical)'. HI F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. HI F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. HI F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. HI F.T. their 7 plots'. OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. HI F.T. their 7 plots'. Allow ± 1 small square'. HI F.T. their plots'. Allow ± 1 small square'. HI F.T. their plots'. Allow ± 1 small square'. F.T. their plots'				
A smooth curve drawn through their plots. C1 C1 C1 C3 C1 C3 C4 C1 C4 C1 C4 C1 C4 C4 C4 C4	2.(a) -4		ы	
OR a curve through the 6 given points and (3,-4). Allow intention to pass through their plots. (\pm '1 small square horizontal or vertical)'. 2.(c) Line y = -3 drawn 1.4 AND 3.6 B1 B1 F.T. intersection of 'their curve' with 'their $y = -3$ ' only if exactly two points of intersection. Allow \pm '1 small square'. 3.(a) For a method that produces 2 prime factors from the set {2, 2, 5, 5, 7} before the 2^{nd} error. 2, 2, 5, 5, 7 A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2.5^2.7$ Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) (2, 5) B1 F.T. intersection of 'their curve' with 'their $y = -3$ ' only if exactly two points of intersection. Allow \pm '1 small square'. M1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$. Inclusion of 1 as a factor gets B0. B1 B1 B1 B1 B1 B1 B1 B1 B1 B	2.(b) At least 6 correct plots and no incorrect plot.		P1	F.T. 'their (3,-4)'. Allow ± '1/2 a small square'.
Allow intention to pass through their plots. (± 1 small square horizontal or vertical). 2.(c) Line y = -3 drawn 1.4 AND 3.6 B1 F.T. intersection of 'their curve' with 'their y = -3' only if exactly two points of intersection. Allow ± '1 small square'. 3.(a) For a method that produces 2 prime factors from the set {2, 2, 5, 5, 7} before the 2 nd error. 2, 2, 5, 5, 7 2 ² x 5 ² x 7 A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. their primes' provided at least one index form used with at least a square. Do not Fit. non-primes. Allow (2 ²)(5 ²)(7) and 2 ² .5 ² .7 Do not allow 2 ² ,5 ² .7. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) y = -x + 2 4.(b) (2,5) B1 4.(c) 2/3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	A smooth <u>curve</u> drawn through their plots.		C1	
2.(c) Line $y = -3$ drawn 1.4 AND 3.6 B1 B1 F.T. intersection of 'their curve' with 'their $y = -3$ ' only if exactly two points of intersection. Allow \pm '1 small square'. 3.(a) For a method that produces 2 prime factors from the set $\{2, 2, 5, 5, 7\}$ before the 2^{red} error. 2, 2, 5, 5, 7 $2^2 \times 5^2 \times 7$ A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2.5^2.7$ Do not allow $2^2.5^2.7$ Inclusion of 1 as a factor gets B0. 5. 4.(c) 2 3 B1 4.(c) 2 3 B1 5. 7 B2 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				
1.4 AND 3.6 B1 F.T. intersection of 'their curve' with 'their $y = -3$ ' only if exactly two points of intersection. Allow ± '1 small square'. 3.(a) For a method that produces 2 prime factors from the set $\{2, 2, 5, 5, 7\}$ before the 2^{nd} error. 2, 2, 5, 5, 7 $2^2 \times 5^2 \times 7$ A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2.5^2.7$. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) $(2,5)$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	2.(c) Line y = −3 drawn		B1	(± 1 small square nonzontal of vertical).
only if exactly two points of intersection. Allow ± '1 small square'. M1 2, 2, 5, 5, 7 before the 2 nd error. 2, 2, 5, 5, 7 2 ² x 5 ² x 7 A1 C.A.O. For sight of the five correct factors (Ignore 1s) B1 F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow (2 ²)(5 ²)(7) and 2 ² .5 ² .7 Do not allow 2 ² .5 ² .7. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) y = -x + 2 4.(b) (2, 5) B1 4.(c) 2/3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				
Allow \pm '1 small square'. 3.(a) For a method that produces 2 prime factors from the set $\{2, 2, 5, 5, 7\}$ before the 2^{nd} error. 2, 2, 5, 5, 7 $2^2 \times 5^2 \times 7$ A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2.5^2.7$ Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ 4.(b) $(2, 5)$ B1 4.(c) $\frac{2}{3}$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	1-4 AND 3-6		B1	
3.(a) For a method that produces 2 prime factors from the set $\{2, 2, 5, 5, 7\}$ before the 2^{nd} error. 2, 2, 5, 5, 7 $2^2 \times 5^2 \times 7$ A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2,5^2.7$. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(c) $\frac{2}{3}$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				
from the set $\{2, 2, 5, 5, 7\}$ before the 2^{nd} error. 2, 2, 5, 5, 7 $2^2 \times 5^2 \times 7$ A1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2,5^2.7$. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) (2, 5) B1 4.(c) $\frac{2}{3}$ B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	3 (a) For a method that produces 2 prime factors		M1	Allow ± 1 Small Square.
error. 2, 2, 5, 5, 7 $2^2 \times 5^2 \times 7$ B1 C.A.O. For sight of the five correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2,5^2.7$. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) $(2,5)$ B1 4.(c) $\frac{2}{3}$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.			IVII	
$2^2 \times 5^2 \times 7$ $2^2 \times 5^2 \times $				
$2^2 \times 5^2 \times 7$ $2^2 \times 5^2 \times $				
$2^2 \times 5^2 \times 7$ $B1 \qquad F.T. \text{ 'their primes' provided at least one index form used with at least a square.} $ $Do \text{ not } F.T. \text{ non-primes.} $ $Allow (2^2)(5^2)(7) \text{ and } 2^2.5^2.7 $ $Do \text{ not allow } 2^2,5^2,7. $ $Inclusion \text{ of 1 as a factor gets B0.}$ $E1 \qquad Do \text{ not accept e.g. 'should be } 2^{24} \text{ ', 'it isn't even'.}$ $4.(a) \qquad y = -x + 2 \qquad B1$ $4.(b) \qquad (2,5) \qquad B1$ $4.(c) \qquad \frac{2}{3} \qquad B1$ $5. \qquad 7 \qquad \qquad \searrow \qquad B3 \qquad B2 \text{ for 5.} $ $B1 \text{ for 4 or 6 or 8 or 9} $ $E1 \text{ If no marks awarded allow SC1 for 11 or 13 or 17.}$	2, 2, 5, 5, 7		A1	
used with at least a square. Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2,5^2.7$. Inclusion of 1 as a factor gets B0. E1 Do not accept e.g. 'should be 2^{24} ', 'it isn't even'. 4.(a) $y = -x + 2$ B1 4.(b) $(2,5)$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	$2^2 \times 5^2 \times 7$		R1	
Do not F.T. non-primes. Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$ Do not allow $2^2,5^2.7$. Inclusion of 1 as a factor gets B0. E1 Do not accept e.g. 'should be 2^{24} ', 'it isn't even'. B1 4.(a) $y = -x + 2$ B1 4.(b) $(2,5)$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	2 20 21			
Do not allow $2^2, 5^2, 7$. Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) $(2, 5)$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				Do not F.T. non-primes.
Inclusion of 1 as a factor gets B0. 3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) $(2, 5)$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				Allow $(2^2)(5^2)(7)$ and $2^2.5^2.7$
3.(b) Any reference to the index being an odd number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) $(2, 5)$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				
number. e.g. 'power must be even', '25 is odd' etc. 4.(a) $y = -x + 2$ B1 4.(b) $(2, 5)$ B1 4.(c) $\frac{2}{3}$ 5. 7 B3 B2 for 5. B1 b2 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	3 (b) Any reference to the index being an odd		F1	inclusion of t as a factor gets bo.
4.(a) $y = -x + 2$ 4.(b) (2, 5) B1 4.(c) $\frac{2}{3}$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	_ ` ' '			
4.(b) (2, 5) B1 4.(c) $\frac{2}{3}$ B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.				Do not accept e.g. 'should be 2 ²⁴ ', 'it isn't even'.
4.(c) 2/3 B1 5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	4.(a) $y = -x + 2$		B1	
5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	4.(b) (2, 5)		B1	
5. 7 B3 B2 for 5. B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.	4.(c) <u>2</u>		B1	
B1 for 4 or 6 or 8 or 9 If no marks awarded allow SC1 for 11 or 13 or 17.		//		D0 (5
If no marks awarded allow SC1 for 11 or 13 or 17.	5. /		B3	
OC1 For OC1, candidates will be expected to:		'	OC1	· ·
present their response in a structured way avalain to the reader what they are doing at				
 explain to the reader what they are doing at each step of their response 				
lay out their explanation and working in a				· · · · · · · · · · · · · · · · · · ·
way that is clear and logical				

GCSE MATHEMATICS Unit 1 : Higher Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 2)
6. (volume) Area Length None Area Volume		В3	Must use the terminology given in the question. B3 for all 5 correct. B2 for 3 or 4 correct. B1 for 2 correct. B0 otherwise.
7.(a)		B1 B1	Any 'blank space' to be taken as 0. For the 4 in correct position. For the 7 in correct position.
4		B1	For the 3 AND 6 in correct positions. OR two of the following conditions met (i) 10 – 'their (non-zero) 7' (ii) 13 – 'their (non-zero) 7'. (iii) total of four numbers = 20. SC1 for all regions correct but using alternative notation e.g. tallies.
7.(b) 9/20 or equivalent. ISW		B2	B1 for a numerator of 9 (F.T. 'their 3' + 'their 6') in a fraction < 1. B1 for a denominator of 20 in a fraction < 1.
8. Method to eliminate variable e.g. equal coefficients with intention to appropriately add or subtract.	✓	M1	No marks for 'trial and improvement'. Allow 1 error in one term, not one with equal coefficients.
First variable found $x = 5$ or $y = -2$. Substitute to find the 2^{nd} variable. Second variable found.	✓ ✓ ✓	A1 m1 A1	C.A.O. F.T. their '1 st variable'.
9. 5.64×10^5		B2	B1 for correct answer not in standard form e.g. 564000 , or 56.4×10^4 . Allow B1 for 5.6×10^5 .
10. 4 <i>n</i> – 8 > <i>n</i> + 17	✓ ✓	B2	If not B2, allow B1 for sight of $4n-8$ AND $n+17$ in an inequality.
3n > 25 n > 25/3	✓ ✓	B1 B1	F.T. from 'their <u>inequality</u> ', if of equivalent difficulty (2 terms on each side). F.T. from 'their an>b' or 'their an <b' a≠1.<="" provided="" td=""></b'>
(least value of n =) 9	✓	B1	F.T. from their ' $n > 25/3$ ', provided $n > 0$. An answer of 9 without showing $4n - 8 > n + 17$ gains B3 only. Accept 'Rashid had 9 (sheep)'.
Accuracy of writing.	1	W1	Accuracy of writing. For W1, candidates will be expected to:

	GCSE MATHEMATICS Unit 1 : Higher Tier Summer 2017	✓	Mark	MARK SCHEME Comments (Page 3)
11.(a)	1/7		B1	
11.(b)	x = 0.37272 AND $100x = 37.2727$ with an attempt to subtract.		M1	Or 10x AND 1000x or equivalent with an attempt to subtract.
	369 ISW (= 41/110) 990		A1	An answer of 36.9 / 99 gains M1 only.
				Alternative method 0·3 + 0·0727272= 3/10 + 72/990 or equivalent M1 369/990 (= 41/110) ISW A1
11.(c)	$(\sqrt{63})^2 - \sqrt{63}\sqrt{7} - \sqrt{63}\sqrt{7} + (\sqrt{7})^2$ = 63 - $\sqrt{441} - \sqrt{441} + 7$ = 28		B1 B1 B1	Accept equivalent methods of processing $\sqrt{63}\sqrt{7}$ e.g. $\sqrt{9}\sqrt{7}\sqrt{7}$ or $3(\sqrt{7})^2$. F.T. only from '– $(\sqrt{7})^{2^*}$ in first line. Accept '14' only if as a result of F.T. '– $(\sqrt{7})^{2^*}$ ' in first line.
				If no marks awarded, SC1 for 3 out of 4 terms correct in initial expansion.
				Alternative method Sight of $\sqrt{63} = 3\sqrt{7}$ B1 $(2\sqrt{7})^2$ B1 $= 28 \text{ C.A.O.}$ B1
12.				All 'E1' marks are dependent on associated 'B1' marks.
	ACB = 74(°)	✓	B1	By applying the alternate segment theorem. Check diagram.
	Alternate segment (theorem) CAB (= $180 - 53 - 74$) = $53(^{\circ})$ (Sum of) angles in a triangle (equals 180°)	✓ ✓ ✓	E1 B1 E1	FT from B1 E0, but not from B0 E0.
e.g.	Concluding statement 'triangle ABC is isosceles as it has two equal angles.'	✓	E1	Must justify why the triangle is isosceles i.e. stating (only) 'triangle is isosceles' at this stage is insufficient.
				Alternative method $CAX = 53(^{\circ})$ (by applying the alternate segment theorem) B1 Alternate segment (theorem) E1 $CAB = 180 - 53 - 74 = 53(^{\circ})$ B1 (Sum of) angles on a straight line (equals 180°) E1 Concluding statement.
				Be aware of equivalent methods (e.g. drawing a radius to the centre O etc.). These methods must lead to a proof before any marks are awarded.
13(a)	Any two of the three lines correct. (x + y = 6 y = x/2 + 3 x = -2) Correct region identified.		B2 B1	B1 for any one line correct. CAO.
13.(b)	(i) (x =) 2		B1	FT 'their region', if possible, for both B1 marks,
, ,	(ii) (y =) 8		B1	provided it is of equivalent difficulty.
14.(a)	not necessarily congruent		B1	
14.(b)	definitely not congruent SAS		B1 B1	
14.(c)	SAS		DI	

GCSE MATHEMATICS Unit 1 : Higher Tier	✓	Mark	MARK SCHEME
Summer 2017		Mark	Comments (Page 4)
15.(a) Correct sine curve with 1 and −1 shown on the y-axis and 180° and 360° shown on the x-axis.		B2	Multiple cycles gain both marks only if both axes fully correctly labelled for x between 0 and 360.
			If B2 not awarded, B1 for a sine curve (single cycle) with missing values on axes OR B1 for multiple cycles with (only) x axis correctly labelled.
15.(b) sin 340°		B1	
16. $3x(x-3) + x(x-1)$ (= 50) $4x^2 - 10x = 50$ $2x^2 - 5x - 25 = 0$	✓ ✓ ✓	M1 m1 A1	Must be seen. Allow $3x(2x - 4) - 2x(x - 1)$ for M1 Must be seen. Convincing.
(2x + 5)(x - 5) = 0 $x = 5$	√ ✓ ✓	B2 B1	B1 for $(2x 5)(x 5) = 0$ Strict F.T. only if one +ve value and one -ve value possible. B0 if negative value not discarded. <u>Using formula</u> $(5 \pm 15)/4$ B2 (B1 for correct intent with 1 slip.) x = 5 B1 (B0 if -2·5 not discarded.) <u>Using trial and improvement</u> Award B2 for a method leading to <u>both</u> solutions, namely $x = 5$ and $x = -2·5$ (with a further B1 for subsequently discarding $x = -2·5$) otherwise B0.
17.(a) <u>6</u> × <u>4</u> × <u>2</u>		M1	, , , , , ,
12 11 10 = <u>48</u> or equivalent (2/55) 1320 ISW		A1	SC1 for 48/1728 or equivalent (1/36) (With replacement)
17.(b) $\underline{6} \times \underline{5} \times \underline{4} + \underline{4} \times \underline{3} \times \underline{2}$ 12 11 10 12 11 10		M2	F.T. consistent use of incorrect total from part (a). If a product is included for P(YYY), it must be worth zero in order for M2 to be awarded. M1 for either of the two (non-zero) terms or for a
= <u>144</u> or equivalent (6/55) 1320 ISW		A1	sum of 2 correct products and 1 incorrect. C.A.O. SC1 for 288/1728 or equivalent (1/6) (With replacement)
17.(c) <u>1176</u> or equivalent (49/55) 1320 ISW		B1	F.T. 1 – 'their 144/1320'.
18. Sight of (0), 1, 4, 9, 16, 25 and 36.	✓	B1	Penalise -1 once only for a <u>consistent</u> misreading of one scale.
Split into 6 areas AND attempt to add derived areas	√	M1	If using 6 separate areas, at least one area calculation (for a trapezium) should be potentially correct. 1st M1 may be implied by correct use of formula.
Correct substitution into trapezium rule. Area = ½ [0 + 36 + 2(1 + 4 + 9 + 16 + 25)]	✓	M1	Or equivalent (0·5+2·5+6·5+12·5+20·5+30·5) F.T. 'their values of y' provided at least 2 correct. Allow 1 slip e.g. in a y-value term, in h, or in an individual area.
= 73	✓	A1	C.A.O.
19. Sight of $4\pi r^2$ AND $6r^2$ Convincing argument, e.g. $4\pi \neq 6$, or $\pi = 1.5$ (or equivalent), which is not true.		B1 E1	E1 depends on B1 having been awarded.

GCSE Mathematics Unit 1 Higher MS Summer 2017

SUMMER 2017

GCSE (NEW)
MATHEMATICS - UNIT 2 (HIGHER)
3300U60-1

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	√	Mark	MARK SCHEME Comments
1.(a) 25·1		B2	B1 for 25(·).
1.(b) -14·3		B2	B1 for 14·3 OR -14·2()
2. $3x - 2 + 2x + 1 + 5x - 9 = 180$ 10x = 190 x = 19	> > >	M1 A1 A1	F.T. from $ax = b$. Allow all 3 marks for $x = 19$.
Substituting $x = 19$ into at least one expression. $(3x - 2 =) 55(^{\circ}) (2x + 1 =) 39(^{\circ}) (5x - 9 =) 86(^{\circ})$ (So not a right-angled triangle)	✓ ✓	M1 A1	If $x \ne 19$ F.T. 'their <u>derived</u> value of x'. F.T. for this A1 if $x \ge 2$. Any two of these expressions correctly evaluated with no incorrect evaluation, provided the sum of the two found is > 90. (statement not required)
One correct evaluation $3 \le x \le 4$ 2 correct evaluations $3.65 \le x \le 3.85$, one < 0, one > 0. 2 correct evaluations $3.65 \le x \le 3.75$, one < 0, one > 0. x = 3.7	* * *	B1 B1 M1	Correct evaluation regarded as enough to identify if negative or positive. Evaluations can be rounded or truncated. If evaluations not seen condone 'too high' or 'too low'. Look out for testing for $x^3 - 2x = 45$. $\frac{x}{3} - 2x - 45$ 3
4. $16 \cdot 9^2 = 6 \cdot 5^2 + MN^2$ or equivalent. $(MN^2) = 243 \cdot 36$ or $(MN) = \sqrt{243 \cdot 36}$ $(MN =) 15 \cdot 6$ (cm)		M1 A1 A1	Allow M1 for $16.9^2 - 6.5^2$. C.A.O.
5. Correct construction of 90° at point B.		B2	With sight of accurate 'method arcs'. e.g. (i) AB extended with arcs either side of B on extended line AB (or line AB extended by 7cm) AND arcs above or below point B). (ii) construction of 60°, 120° and a bisection. B1 for complete method but line not drawn.
Correct construction of angle BAC = 60°.		B1	With sight of accurate 'method arcs' and line drawn. If <u>all three</u> marks gained but triangle not completed penalise -1 mark. (Treat reversal of angles as a misread.)
6. $\frac{QR}{18} = \tan 24(^{\circ})$ $R = 18 \times \tan 24(^{\circ})$		M1 m1	OR $\frac{QR}{\sin 24} = \frac{18}{\sin 66}$ $QR = \frac{18 \times \sin 24}{\sin 60}$
= 8(·01)(cm)		A1	sin 66 C.A.O.

GCSE MATHEMATICS			
Unit 2 : Higher tier			MARK SCHEME
Summer 2017	✓	Mark	Comments
7.(a) 0·3(0) on 'box C branch'.		B1	
7.(b)			FT 'their 0·3' from box C branch, only if, between 0
01.14.40.45 0.7.00.05 0.4.00.00		D4	and 1.
Sight of 0.45×0.7 OR 0.25×0.4 OR 0.3×0.8		B1	
$0.45 \times 0.7 + 0.25 \times 0.4 + 0.3 \times 0.8$		M1	
(0.315 + 0.1 + 0.24)		IVII	
= 0.655 or 131/200 or equivalent ISW		A1	Provided less than 1.
7.(c) <u>1</u> 3		B1	F.T. for the fraction that is the nearest to
3			1- 'their 0.655' provided 0<'their 0.655'<1
7			Correct answer of 1/3 gains B1 regardless.
8.(a) $x(x^2 - 5)$		B1	
8.(b) $2x^2 + 5x - 12$		B2	B1 for $2x^2 + kx - 12$ OR $2x^2 + 5x + k$
8.(c) $(x-7)(x+4)$ ISW		B2	B1 for (x 7)(x 4).
9.(a) $3y = 2x + 7$		B1	
9.(b) $y = -x + 3$		B1	
5			
10. 360 – 2 × 37		M1	
= 286(°)		A1	SC1 for sight of 74(°).
11. $\frac{BD \times 5}{2} = 35$	√	M1	
_		A1	May be seen on the diagram
BD = 14(cm)	✓	AI	May be seen on the diagram. Note: If they state that AB = 14cm, or indicate on
			the diagram that AB = 14cm then it is M0A0 as an
			incorrect method used for area of a right-angled
			triangle (however an unattached 14cm has to be
			given the benefit of the doubt and be awarded
			M1A1).
$Cos x = \frac{14}{22}$	√	M1	FT 'their stated or shown length BD'.
$32 x = \cos^{-1} 0.4375$		1	FT has to use 'their BD' (not CD).
$x = \cos 0.4375$ x = 64(°)	V	m1 A1	Accept answer rounded or truncated.
X = 04()	V	Λ1	[e.g. if their BD = 7, then accept $77(\cdot 36^{\circ})$]
Organisation and Communication.	√	OC1	For OC1, candidates will be expected to:
			present their response in a structured way
			explain to the reader what they are doing at
			each step of their response
			 lay out their explanation and working in a
			way that is clear and logical
Accuracy of writing.	✓	W1	For W1, candidates will be expected to:
7.00draby of witting.			show all their working
			make few, if any, errors in spelling,
			punctuation and grammar
			use correct mathematical form in their
			working
			use appropriate terminology, units, etc.

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	√	Mark	MARK SCHEME Comments
12. $d(c-5) = 3c-7$	√	B1	FT until 2 nd error for equivalent level of difficulty.
dc - 5d = 3c - 7	✓	B1	dc = 3c - 7 + 5d gains first B2.
dc - 3c = 5d - 7 OR 7 - 5d = 3c - dc	✓	B1	
c(d-3) = 5d-7 OR 7-5d = c(3-d)	✓	B1	
$c = \underbrace{5d - 7}_{d - 3} \text{ OR } \underbrace{\frac{7 - 5d}{3 - d}}$	✓	B1	Mark final answer.
			Alternative version
			$\left(c-5 = \frac{3c}{d} - \frac{7}{d}\right)$
			$c - \frac{3c}{d} = 5 - \frac{7}{d} $ B1
			$c\left(1-\frac{3}{d}\right) = 5 - \frac{7}{d} B1$
			$c = \frac{5 - \frac{7}{d}}{1 - \frac{3}{d}}$ B1
			$c = \frac{a}{1 - \frac{3}{d}}$ B1
			$c = \frac{5d - 7}{d - 3}$ B2 OR B1 for $c = \frac{\frac{1}{d}(5d - 7)}{\frac{1}{d}(d - 3)}$ oe
13. (sin BAC=) <u>6.4 × sin 46°</u> 5.3	√ √	M2	M1 for $\frac{\sin BAC}{6.4} = \frac{\sin 46^{\circ}}{5.3}$ or equivalent
60.3(006°)	✓	A1	Allow 60(°) from correct working.
Area = $\frac{1}{2}$ × 5.3 × 6.4 × sin (180° - 46° - 60.3(006°) = 16.2(78cm ²) or 16.3(cm ²)	✓ ✓	M1 A1	FT 'their derived 60.3(006°)' Accept 16(cm²) from correct working. SC1 for 11.78(cm²).

GCSE MATHEMATICS			
Unit 2 : Higher tier Summer 2017	✓	Mark	MARK SCHEME Comments
			- Comments
14 (Greatest area =) 31.5 x 23.5 – 20.5 x 12.5 (= 740.25 – 256.25)		M2	Award M1 for correct use of values $31 < l \le 31.5$, $23 < w \le 23.5$, $20.5 \le l < 21$, $12.5 \le w < 13$. OR M1 for 31.5×23.5 – 'area of inner rectangle' OR M1 for 'area of outer rectangle' – 20.5×12.5
$= 484 \text{ (cm}^2)$		A1	CAO
			Alternative examples for method marks (adding up split areas of the shaded region). 1. Horizontal split $2 \times 31.5 \times 5.5 + 2 \times 12.5 \times 5.5$, M2 OR 2. Vertical split $2 \times 23.5 \times 5.5 + 2 \times 20.5 \times 5.5$, M2 Award M1 for correct use of values $31 < l \le 31.5$, $23 < w \le 23.5$, $20.5 \le l < 21$, $12.5 \le w < 13$ and 'their 5.5' adjusted accordingly to their values. Note that the 'shaded width' need not be consistent around the inner rectangle.
15. Enlargement with scale factor -½ and centre (7,4)		В3	Penalise -1 for further incorrect steps. Award B2 for reference to any two of 'Enlargement', '-½' and 'centre (7, 4)' either identified by coordinates or joining corresponding vertices on the grid. Award B1 for reference to any one of 'Enlargement', '-½' and 'centre (7, 4)' either identified by coordinates or joining corresponding vertices on the grid. SC2 awarded for the correct two step transformation from shape A to B, e.g. enlargement SF ½ centre origin, rotation 180° about (5.25, 3) or enlargement SF ½ and 180° rotation, (both) with centre (7.4).
$(0.8)^{3} or equivalent = 0.512 or equivalent$		M1 A1	Allow 80(%) ³ Fractional answer: 64/125 (ISW)
16.(b) $2 \times (0.8)^2 \times 0.2$ OR equivalent		M2	M1 for sight of $0.8^2 \times 0.2$ or for sight of 0.128.
= 0.256 or equivalent		A1	Fractional answer: 32/125 (ISW)

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	~	Mark	MARK SCHEME Comments
17. $-\left(\sqrt[3]{w}\right)^5 \qquad -\frac{3}{5}w \qquad -\left(\sqrt[5]{w}\right)^3 \qquad \boxed{\frac{1}{\left(\sqrt[5]{w}\right)^3}} \qquad \frac{1}{\left(\sqrt[3]{w}\right)^5}$		B1	
18. $x(5x - 3) = 7 \text{ OR } 7 = x(5x - 3) \text{ OR}$ $5x^2 - 3x = 7 \text{ OR } 7 = 5x^2 - 3x$ $5x^2 - 3x - 7 = 0$	√ √	M1 A1	'= 0' required, but may be implied by an attempt to use the quadratic formula or if $a=5, b=-3,$ $c=-7$ used in the quadratic formula.
$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 5 \times (-7)}}{2 \times 5}$	√	M1	FT 'their quadratic equation' of equivalent difficulty (3 terms with at least one negative term). Allow one slip in substitution, but must be correct formula.
$x = (3\pm\sqrt{149})/10$ x = 1.52 with $x = -0.92$ (answers to 2dp)	√ ✓	A1 A1	CAO for their quadratic equation. If none of the last 3 marks awarded for solving the given equation or the correct quadratic (irrespective if any of the opening two marks awarded), and trial and improvement used, then award: SC3 for both correct solutions given, correct to 2 decimal places: $x = 1.52$ with $x = -0.92$, OR SC2 for both correct solutions given, but correct to 3 (or more) decimal places: $x = 1.520(6)$ with $x = -0.920(6)$ Note: no marks to be awarded for 1 correct solution from trial and improvement.
19.(a) Appropriate example: E.g. $\pi \times \pi = \pi^2$, $(1 + \sqrt{3})^2 = 4 + 2\sqrt{3}$ $(\sqrt[3]{2})^2 = \sqrt[3]{4}$ OR $2^{\frac{2}{3}}$		B1	The following can be applied if sight of π in the working lines or answer space: If π or 3.141 (with or without the '') used AND either π^2 or 9.8696 (with or without the '') seen in the answer space, this will gain the B1. However, watch out for π seen, and e.g. 3.141 and 9.8658 offered in the answer spaces. This gains B0 because 3.141² has been evaluated (not π^2).
19.(b) Two different irrational numbers and the correct rational number as the answer.		B1	Answers in the boxes take precedence.
Examples: $\sqrt{2} \times \sqrt{8} = \sqrt{16} \text{ (or simplified to 4)}$ $\sqrt{12} \times \frac{1}{\sqrt{3}} = \frac{\sqrt{12}}{\sqrt{3}} \text{ (or simplified to 2)}$ $\pi \times \frac{1}{2} = 1$			
π $2^{\frac{1}{2}} \times 2^{\frac{3}{2}} = 2^2 \text{ (answer can be simplified to 4)}$			

GCSE MATHEMATICS Unit 2 : Higher tier Summer 2017	✓	Mark	MARK SCHEME Comments
20. $y = f(x) = 2$ $y = f(x) = 2$ $y = f(x+2)$		B1	
y = -f(x) $y = -f(x)$		B1	
y = 2f(x) $y = f(2x)$		B1	
$y = f(x) \pm 2$ $y = f(x) \pm 2$ $y = \frac{1}{2}f(x)$			
y = f(x-2)		B1	
21. Attempt to find the base diagonal	√	S1	e.g. diagonal ² = $x^2 + x^2$ or $x^2 + x^2 = 2x^2$.
['Their face diagonal'] ² + ['Their edge'] ² =20 ²	✓	B1	Clear attempt at connecting their indicated face diagonal and edge of cube with the internal diagonal. This mark implies S1.
$x^2 + x^2 + x^2 = 400 \text{ OR } 3x^2 = 400 \text{ OR}$ $x^2 = 400/3 \text{ OR equivalent.}$	✓	M1	Correct equation connecting edges and internal diagonal. This mark implies S1 B1.
$x = \sqrt{(400/3)} \text{ OR } 11.5(4700538\text{cm})$	✓	A1	CAO
			SC2 for an answer of 11.5(cm) from a correct trial and improvement method, OR SC2 for an unsupported 11.5(cm)
			SC1 for two correct evaluations of 11≤x≤12 from a correct trial and improvement method with one < 400 and one > 400.