Hen Gwestiynau Arholiad The Remainder Theorem; The Factor Theorem

(Gaeaf 2005)

4. (a) Find all the factors of the polynomial

$$
\begin{equation*}
3 x^{3}+2 x^{2}-19 x+6 \tag{6}
\end{equation*}
$$

(b) Find the remainder when $3 x^{3}+2 x^{2}-19 x+6$ is divided by $x+1$.
(Haf 2005)
3. (a) Given that $x-1$ is a factor of $3 x^{3}+5 x^{2}+a x-4$, show that $a=-4$.
(b) Solve the equation $3 x^{3}+5 x^{2}-4 x-4=0$.
(c) Calculate the remainder when $3 x^{3}+5 x^{2}-4 x-4$ is divided by $x+1$.

(Gaeaf 2006)

6. (a) Given that when the polynomial $a x^{3}-x^{2}-7 x+6$ is divided by $x-2$ the remainder is 4 , show that $a=2$.
(b) Solve the equation $2 x^{3}-x^{2}-7 x+6=0$.
(Haf 2006)
7. The polynomial

$$
f(x) \equiv p x^{3}-x^{2}+q x-6
$$

has $x-3$ as a factor. When $f(x)$ is divided by $x-2$, the remainder is -20 .
(a) Show that $p=2$ and find the value of q.
(b) Factorise $f(x)$.
(Gaeaf 2007)
3. When $9 x^{3}+6 x^{2}-5 x+p$ is divided by $x-1$, the remainder is 8 .
(a) Show that $p=-2$.
(b) Factorise $9 x^{3}+6 x^{2}-5 x-2$.
(Haf 2007)
3. (a) Given that $x-3$ is a factor of $x^{3}-5 x^{2}-2 x+p$, show that $p=24$.
(b) Solve the equation

$$
\begin{equation*}
x^{3}-5 x^{2}-2 x+24=0 \tag{4}
\end{equation*}
$$

(c) Find the remainder when $x^{3}-5 x^{2}-2 x+24$ is divided by $x-2$.
8. (a) When the polynomial $6 x^{3}+a x^{2}-3 x-2$ is divided by $x+2$, the remainder is -24 . Show that $a=5$.
(b) Factorise $6 x^{3}+5 x^{2}-3 x-2$.
(Haf 2008)
7. The polynomial $4 x^{3}+p x^{2}-11 x+q$ has $x-2$ as a factor. When the polynomial is divided by $x+1$, the remainder is 9 .
(a) Show that $p=-4$ and $q=6$.
(b) Factorise $4 x^{3}-4 x^{2}-11 x+6$.

(Gaeaf 2009)

7. (a) Find the remainder when $x^{3}-17$ is divided by $x-3$.
(b) Solve the equation $6 x^{3}-7 x^{2}-14 x+8=0$.
(Haf 2009)
8. (a) When $a x^{3}-12 x^{2}-6 x+5$ is divided by $x+1$, the remainder is -3 .

Find the value of the constant a.
(b) Factorise $8 x^{3}-14 x^{2}-7 x+6$.
(Gaeaf 2010)
8. The polynomial $f(x)$ is defined by

$$
f(x)=2 x^{3}+11 x^{2}+4 x-5
$$

(a) (i) Evaluate $f(-2)$.
(ii) Using your answer to part (i), write down one fact which you can deduce about $f(x)$.
(b) Solve the equation $f(x)=0$.
(Haf 2010)
8. (a) Given that $x+2$ is a factor of $12 x^{3}+k x^{2}-13 x-6$, write down an equation satisfied by k. Hence show that $k=19$.
(b) Factorise $12 x^{3}+19 x^{2}-13 x-6$.
(c) Find the remainder when $12 x^{3}+19 x^{2}-13 x-6$ is divided by $2 x-1$.
7. (a) Find the remainder when $x^{3}-3$ is divided by $x+2$.
(b) Solve the equation $6 x^{3}+x^{2}-11 x-6=0$.
(Haf 2011)
8. The polynomial $p x^{3}-x^{2}-31 x+q$ has $x+2$ as a factor. When the polynomial is divided by $x-1$, the remainder is -36 .
(a) Show that $p=6$ and $q=-10$.
(b) Factorise $6 x^{3}-x^{2}-31 x-10$.
(Gaeaf 2012)
8. (a) When $a x^{3}-21 x-10$ is divided by $x-3$, the remainder is 35 .

Write down an equation satisfied by a and hence show that $a=4$.
(b) Factorise $4 x^{3}-21 x-10$.
(Haf 2012)
8. (a) Solve the equation $6 x^{3}-19 x^{2}+11 x+6=0$.
(b) When $x^{3}-53$ is divided by $x-a$, the remainder is 11 . Find the value of the constant a.
(Gaeaf 2013)
8. (a) Given that $x+2$ is a factor of $p x^{3}+18 x^{2}-4 x-8$, write down an equation satisfied by p. Hence show that $p=9$.
(b) Solve the equation $9 x^{3}+18 x^{2}-4 x-8=0$.
(Haf 2013)
8. Solve the equation $8 x^{3}-2 x^{2}-7 x+3=0$.
(Gaeaf 2014)
9. (a) When $a x^{3}+13 x^{2}-10 x-24$ is divided by $x+3$, the remainder is -39 .

Write down an equation satisfied by a and hence show that $a=6$.
(b) Solve the equation $6 x^{3}+13 x^{2}-10 x-24=0$.
(Haf 2014)
8. Solve the equation $6 x^{3}-13 x^{2}+4=0$.
8. (a) Given that $x-3$ is a factor of $p x^{3}-13 x^{2}-19 x+12$, write down an equation satisfied by p. Hence show that $p=6$.
(b) Solve the equation $6 x^{3}-13 x^{2}-19 x+12=0$.
(Haf 2016)
9. The polynomial $f(x)$ is given by

$$
f(x)=8 x^{3}+2 x^{2}-41 x+10
$$

(a) Factorise $f(x)$.
(b) Hence or otherwise, evaluate $f(2 \cdot 25)$.
(Haf 2017)
7. (a) Given that $x-2$ is a factor of $k x^{3}+2 x^{2}-41 x+10$, write down an equation satisfied by k. Hence show that $k=8$.
(b) Factorise $8 x^{3}+2 x^{2}-41 x+10$.
(c) Find the remainder when $8 x^{3}+2 x^{2}-41 x+10$ is divided by $2 x+1$.
(Haf 2018)
8. (a) (i) Find one real root of the equation $8 x^{3}+7 x^{2}-13 x+10=0$.
(ii) Show that the root you have found is the only real root of the equation

$$
\begin{equation*}
8 x^{3}+7 x^{2}-13 x+10=0 \tag{7}
\end{equation*}
$$

(b) When $x^{3}-80$ is divided by $x-a$, the remainder is 45 . Find the value of the constant a.
(Haf 2019)
8. The polynomial $p x^{3}-13 x^{2}+q x+12$ has $x-3$ as a factor. When the polynomial is divided by $x+2$, the remainder is -50 .
(a) Write down two equations satisfied by p and q. Hence, show that $p=6$ and $q=-19$. [6
(b) Factorise $6 x^{3}-13 x^{2}-19 x+12$.

