Hen Gwestiynau Arholiad

The Remainder Theorem; The Factor Theorem

(Gaeaf 2005)

4. (a) Find all the factors of the polynomial

$$3x^3 + 2x^2 - 19x + 6.$$
 [6]

(b) Find the remainder when $3x^3 + 2x^2 - 19x + 6$ is divided by x + 1. [3]

(Haf 2005)

3. (a) Given that
$$x - 1$$
 is a factor of $3x^3 + 5x^2 + ax - 4$, show that $a = -4$. [2]

(b) Solve the equation
$$3x^3 + 5x^2 - 4x - 4 = 0$$
. [4]

(c) Calculate the remainder when
$$3x^3 + 5x^2 - 4x - 4$$
 is divided by $x + 1$. [2]

(Gaeaf 2006)

6. (a) Given that when the polynomial $ax^3 - x^2 - 7x + 6$ is divided by x - 2 the remainder is 4, show that a = 2.

(b) Solve the equation
$$2x^3 - x^2 - 7x + 6 = 0$$
. [5]

(Haf 2006)

5. The polynomial

$$f(x) \equiv px^3 - x^2 + qx - 6$$

has x - 3 as a factor. When f(x) is divided by x - 2, the remainder is -20.

(a) Show that
$$p = 2$$
 and find the value of q . [6]

(b) Factorise
$$f(x)$$
. [3]

(Gaeaf 2007)

3. When $9x^3 + 6x^2 - 5x + p$ is divided by x - 1, the remainder is 8.

(a) Show that
$$p = -2$$
. [2]

(b) Factorise
$$9x^3 + 6x^2 - 5x - 2$$
. [5]

(Haf 2007)

3. (a) Given that
$$x - 3$$
 is a factor of $x^3 - 5x^2 - 2x + p$, show that $p = 24$. [2]

(b) Solve the equation

$$x^3 - 5x^2 - 2x + 24 = 0. ag{4}$$

(c) Find the remainder when $x^3 - 5x^2 - 2x + 24$ is divided by x - 2. [2]

(Gaeaf 2008)

(b) Factorise
$$6x^3 + 5x^2 - 3x - 2$$
. [5]

(Haf 2008)

7. The polynomial $4x^3 + px^2 - 11x + q$ has x - 2 as a factor. When the polynomial is divided by x + 1, the remainder is 9.

(a) Show that
$$p = -4$$
 and $q = 6$. [6]

(b) Factorise
$$4x^3 - 4x^2 - 11x + 6$$
. [3]

(Gaeaf 2009)

7. (a) Find the remainder when
$$x^3 - 17$$
 is divided by $x - 3$. [2]

(b) Solve the equation
$$6x^3 - 7x^2 - 14x + 8 = 0$$
. [6]

(Haf 2009)

8. (a) When $ax^3 - 12x^2 - 6x + 5$ is divided by x + 1, the remainder is -3. Find the value of the constant a. [2]

(b) Factorise
$$8x^3 - 14x^2 - 7x + 6$$
. [5]

(Gaeaf 2010)

8. The polynomial f(x) is defined by

$$f(x) = 2x^3 + 11x^2 + 4x - 5.$$

- (a) (i) Evaluate f(-2).
 - (ii) Using your answer to part (i), write down one fact which you can deduce about f(x). [2]
- (b) Solve the equation f(x) = 0.

(Haf 2010)

8. (a) Given that x + 2 is a factor of $12x^3 + kx^2 - 13x - 6$, write down an equation satisfied by k. Hence show that k = 19.

(b) Factorise
$$12x^3 + 19x^2 - 13x - 6$$
. [3]

(c) Find the remainder when $12x^3 + 19x^2 - 13x - 6$ is divided by 2x - 1. [2]

(Gaeaf 2011)

7. (a) Find the remainder when
$$x^3 - 3$$
 is divided by $x + 2$. [2]

(b) Solve the equation
$$6x^3 + x^2 - 11x - 6 = 0$$
. [6]

(Haf 2011)

8. The polynomial $px^3 - x^2 - 31x + q$ has x + 2 as a factor. When the polynomial is divided by x - 1, the remainder is -36.

(a) Show that
$$p = 6$$
 and $q = -10$. [6]

(b) Factorise
$$6x^3 - x^2 - 31x - 10$$
. [3]

(Gaeaf 2012)

- 8. (a) When $ax^3 21x 10$ is divided by x 3, the remainder is 35. Write down an equation satisfied by a and hence show that a = 4. [2]
 - (b) Factorise $4x^3 21x 10$. [5]

(Haf 2012)

8. (a) Solve the equation
$$6x^3 - 19x^2 + 11x + 6 = 0$$
. [6]

(b) When $x^3 - 53$ is divided by x - a, the remainder is 11. Find the value of the constant a. [2]

(Gaeaf 2013)

- 8. (a) Given that x + 2 is a factor of $px^3 + 18x^2 4x 8$, write down an equation satisfied by p. Hence show that p = 9. [2]
 - (b) Solve the equation $9x^3 + 18x^2 4x 8 = 0$. [4]

(Haf 2013)

8. Solve the equation
$$8x^3 - 2x^2 - 7x + 3 = 0$$
. [6]

(Gaeaf 2014)

- 9. (a) When $ax^3 + 13x^2 10x 24$ is divided by x + 3, the remainder is -39. Write down an equation satisfied by a and hence show that a = 6. [2]
 - (b) Solve the equation $6x^3 + 13x^2 10x 24 = 0$. [6]

(Haf 2014)

8. Solve the equation $6x^3 - 13x^2 + 4 = 0$. [6]

(Haf 2015)

8. (a) Given that x - 3 is a factor of $px^3 - 13x^2 - 19x + 12$, write down an equation satisfied by p. Hence show that p = 6. [2]

(b) Solve the equation
$$6x^3 - 13x^2 - 19x + 12 = 0$$
. [4]

(Haf 2016)

9. The polynomial f(x) is given by

$$f(x) = 8x^3 + 2x^2 - 41x + 10.$$

(a) Factorise
$$f(x)$$
. [5]

(b) Hence or otherwise, evaluate f(2.25). [2]

(Haf 2017)

- 7. (a) Given that x 2 is a factor of $kx^3 + 2x^2 41x + 10$, write down an equation satisfied by k. Hence show that k = 8. [2]
 - (b) Factorise $8x^3 + 2x^2 41x + 10$. [3]
 - (c) Find the remainder when $8x^3 + 2x^2 41x + 10$ is divided by 2x + 1. [2]

(Haf 2018)

- **8.** (a) (i) Find one real root of the equation $8x^3 + 7x^2 13x + 10 = 0$.
 - (ii) Show that the root you have found is the only real root of the equation

$$8x^3 + 7x^2 - 13x + 10 = 0.$$
 [7]

(b) When $x^3 - 80$ is divided by x - a, the remainder is 45. Find the value of the constant a. [2]

(Haf 2019)

- 8. The polynomial $px^3 13x^2 + qx + 12$ has x 3 as a factor. When the polynomial is divided by x + 2, the remainder is -50.
 - (a) Write down two equations satisfied by p and q. Hence, show that p=6 and q=-19. [6]

(b) Factorise
$$6x^3 - 13x^2 - 19x + 12$$
. [3]