

$$\int f'(g(x))g'(x) dx = f(g(x)) + c$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

What is the work?

Reversing the chain rule and the product rule to **integrate by substitution** and **integrate by parts**.


What is required before starting?

A Level Unit 1: Differentiation and integration.

A Level Unit 3: Further differentiation and integration.

Where does this lead to?

Integration by parts can be extended to produce reduction formulae than can integrate expressions such as $\cos^n x$.

In cases where we are integrating something that includes **a function and its derivative**, we can try to find the answer through **integration by substitution**. We show how this works using the following example.

Example I

$$\int (24x^2 + 9)e^{8x^3 + 9x} \, dx$$

We recognise that the integral contains the function $f(x) = 8x^3 + 9x$ and its derivative $f'(x) = 24x^2 + 9$. We choose the substitution based on this function: $u = 8x^3 + 9x$.

By differentiating u, we obtain

$$\frac{du}{dx} = 24x^2 + 9$$

We can re-arrange the above to make dx the subject:

$$du = (24x^2 + 9) dx$$
$$\frac{du}{24x^2 + 9} = dx$$

We now substitute u instead of $8x^3 + 9x$ and $\frac{du}{24x^2+9}$ instead of dx in the original integral:

$$\int (24x^2 + 9)e^{8x^3 + 9x} dx$$

$$= \int (24x^2 + 9)e^u \frac{du}{24x^2 + 9}$$

$$= \int e^u du$$

 e^u integrates (with respect to u) to give e^u . Therefore

$$\int e^u \, du = e^u + c$$

Theory

To finish, we substitute back for u:

$$\int e^u \, du = e^{8x^3 + 9x} + c$$

Therefore

$$\int (24x^2 + 9)e^{8x^3 + 9x} dx = e^{8x^3 + 9x} + c$$

Exercise I

Use integration by substitution to show that

$$\int 12x \cos(6x^2 - 4) dx = \sin(6x^2 - 4) + c$$

In general, we can **integrate by substitution** when we integrate an expression of the form f'(g(x))g'(x).

$$\int f'(g(x))g'(x) dx = f(g(x)) + c$$

To show why the above is true, we can use the chain rule to differentiate y = f(g(x)) + c.

Let u = g(x) so that y = f(u) + c.

By differentiating, $\frac{du}{dx} = g'(x)$ and $\frac{dy}{du} = f'(u)$.

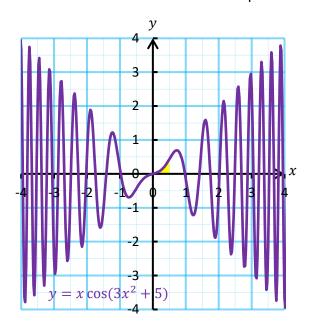
Chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
$$\frac{dy}{dx} = f'(u) \times g'(x)$$
$$\frac{dy}{dx} = f'(g(x))g'(x)$$

So, $\int f'(g(x))g'(x) dx = f(g(x)) + c$, and we can think of integration by substitution as the **reverse** of the chain rule.

Example 2

Evaluate $\int_{0}^{0.5} x \cos(3x^2 + 5) dx$.


We recognise that the integral contains the function $f(x) = 3x^2 + 5$ and a **multiple** of its derivative f'(x) = 6x. We choose the substitution based on this function: $u = 3x^2 + 5$.

By differentiating u, we obtain

$$\frac{du}{dx} = 6x$$

We can re-arrange the above to make dx the subject:

$$du = 6x dx$$
$$\frac{du}{6x} = dx$$

We now substitute u instead of $3x^2 + 5$ and $\frac{du}{6x}$ instead of dx in the original integral:

$$\int_0^{0.5} x \cos(3x^2 + 5) dx$$

$$= \int_0^{0.5} x \cos(u) \frac{du}{6x}$$

$$= \int_0^{0.5} \frac{1}{6} \cos(u) du$$

Before integrating with respect to u, we must ensure that the **limits** are also in terms of u, not x. Currently, we are integrating between x=0 and x=0.5. Remembering that $u=3x^2+5$,

If
$$x = 0$$
 then $u = 3 \times 0^2 + 5$

If
$$x = 0.5$$
 then $u = 3 \times 0.5^2 + 5$
 $u = 5.75$

So, the integral in terms of u is

$$\int_{5}^{5.75} \frac{1}{6} \cos(u) \, du$$

 $\cos(u)$ integrates (with respect to u) to give $\sin(u)$. Therefore

$$\begin{split} &\int_{5}^{5.75} \frac{1}{6} \cos(u) \, du \\ &= \left[\frac{1}{6} \sin(u) \right]_{5}^{5.75} \\ &= \left(\frac{1}{6} \times \sin(5.75) \right) - \left(\frac{1}{6} \times \sin(5) \right) \\ &= -0.08471317958 - -0.1598207124 \\ &= 0.07510753282 \\ &= 0.075 \text{ square units, to 3 decimal places} \end{split}$$

Exercise 2

Evaluate $\int_{1}^{2} 12x e^{3x^{2}-4} dx$.

Integrating $\sin^2(\theta)$ and $\cos^2(\theta)$

We remember from previous work that

$$\cos(2\theta) = 2\cos^2(\theta) - 1$$

$$\cos(2\theta) = 1 - 2\sin^2(\theta)$$

By re-arranging,

$$\frac{\cos(2\theta)+1}{2}=\cos^2(\theta)$$

$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$$

Therefore

$$\int \cos^2(\theta) d\theta$$

$$= \int \frac{\cos(2\theta) + 1}{2} d\theta$$

$$= \int \frac{1}{2} \cos(2\theta) + \frac{1}{2} d\theta$$

$$= \frac{1}{4} \sin(2\theta) + \frac{\theta}{2} + c$$

$$\int \sin^2(\theta) d\theta$$

$$= \int \frac{1 - \cos(2\theta)}{2} d\theta$$

$$= \int \frac{1}{2} - \frac{1}{2} \cos(2\theta) d\theta$$

$$= \frac{\theta}{2} + \frac{1}{4} \cos(2\theta) + c$$

Example 3

(a) Use the substitution $x = 4\sin(\theta)$ to show that

$$\int_0^{2\sqrt{2}} \frac{x^2}{\sqrt{(16 - x^2)}} dx = \int_0^a b \sin^2 \theta \, d\theta$$

where a and b are constants whose values are to be determined.

(b) Hence, evaluate

$$\int_0^{2\sqrt{2}} \frac{x^2}{\sqrt{(16-x^2)}} dx$$

Give your answer in the form $c\pi + d$, where c and d are integers whose values are to be determined.

(a) If
$$x = 4\sin(\theta)$$
 then $\frac{dx}{d\theta} = 4\cos(\theta)$ and $x^2 = 16\sin^2(\theta)$ $dx = 4\cos(\theta) d\theta$

Limits: If $x = 0$ then $0 = 4\sin(\theta)$ If $x = 2\sqrt{2}$ then $2\sqrt{2} = 4\sin(\theta)$ $0 = \sin(\theta)$ $\frac{\sqrt{2}}{2} = \sin(\theta)$ $\theta = \sin^{-1}(0)$ $\theta = \sin^{-1}(\frac{\sqrt{2}}{2})$ $\theta = 0$ $\theta = \frac{\pi}{4}$

Therefore

$$\int_{0}^{2\sqrt{2}} \frac{x^{2}}{\sqrt{(16 - x^{2})}} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{16 \sin^{2}(\theta)}{\sqrt{(16 - 16 \sin^{2}(\theta))}} \times 4 \cos(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{16 \sin^{2}(\theta)}{\sqrt{16(1 - \sin^{2}(\theta))}} \times 4 \cos(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{16 \sin^{2}(\theta)}{\sqrt{16 \cos^{2}(\theta)}} \times 4 \cos(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{16 \sin^{2}(\theta)}{4 \cos(\theta)} \times 4 \cos(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{16 \sin^{2}(\theta)}{4 \cos(\theta)} d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{16 \sin^{2}(\theta)}{4 \cos(\theta)} d\theta$$

So, $a = \frac{\pi}{4}$ and b = 16.

(b)

$$\int_{0}^{2\sqrt{2}} \frac{x^{2}}{\sqrt{(16-x^{2})}} dx$$

$$= \int_{0}^{\frac{\pi}{4}} 16 \sin^{2}(\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} 16 \left(\frac{1-\cos(2\theta)}{2}\right) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} 8(1-\cos(2\theta)) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} 8 - 8\cos(2\theta) d\theta$$

$$= \left[8\theta - 4\sin(2\theta)\right]_{0}^{\frac{\pi}{4}}$$

$$= \left(8 \times \frac{\pi}{4} - 4 \times \sin\left(2 \times \frac{\pi}{4}\right)\right) - (8 \times 0 - 4 \times \sin(2 \times 0))$$

$$= (2\pi - 4 \times 1) - (0 - 4 \times 0)$$

$$= (2\pi - 4) - (0 - 0)$$

$$= 2\pi - 4$$

So, c = 2 and d = -4.

Exercise 3

Use an appropriate sustitution to show that

J	$\int_{0}^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} dx = \frac{\pi}{12} - \frac{\sqrt{3}}{8}.$

Example 4

Use the substitution u = 3x - 2 to evaluate

This time the x on top of the fraction will not cancel.

$$\int_1^2 \frac{x}{(3x-2)^4} dx.$$

If
$$u = 3x - 2$$
 then $\frac{du}{dx} = 3$ $du = 3 dx$ $\frac{du}{3} = dx$

If
$$u = 3x - 2$$
 then $u + 2 = 3x$
$$\frac{u+2}{3} = x$$

Limits: If
$$x = 1$$
 then $u = 3 \times 1 - 2$
 $u = 1$

If
$$x = 2$$
 then $u = 3 \times 2 - 2$
 $u = 4$

Therefore

$$\int_{1}^{2} \frac{x}{(3x-2)^{4}} dx$$

$$= \int_{1}^{4} \frac{\left(\frac{u+2}{3}\right)}{u^{4}} \frac{du}{3}$$

$$= \frac{1}{9} \int_{1}^{4} \frac{u+2}{u^{4}} du$$

$$= \frac{1}{9} \int_{1}^{4} u^{-3} + 2u^{-4} du$$

$$= \frac{1}{9} \left[\frac{u^{-2}}{-2} + \frac{2u^{-3}}{-3} \right]_{1}^{4}$$

$$= \frac{1}{9} \left[\left(\frac{4^{-2}}{-2} + \frac{2 \times 4^{-3}}{-3} \right) - \left(\frac{1^{-2}}{-2} + \frac{2 \times 1^{-3}}{-3} \right) \right]$$

$$= \frac{1}{9} \left[\left(\frac{1}{-32} + \frac{2}{-192} \right) - \left(\frac{1}{-2} + \frac{2}{-3} \right) \right]$$

$$= \frac{1}{9} \left[-\frac{1}{24} - \frac{7}{6} \right]$$

$$= \frac{1}{9} \times \frac{9}{8}$$

$$= \frac{1}{8}$$

Exercise 4

Use the substitution u = 2x - 3 to evaluate

$$\int_2^3 \frac{x}{(2x-3)^3} dx.$$

Ysgol y Creuddyn	The Mathematics Department

Choosing an appropriate substitution

The substitution is not always given in an examination question. Here are **some** appropriate substitutions.

Integral	Substitution
$\int \sqrt{a^2 - x^2} dx$	$x = a \sin \theta$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$x = a \sin \theta$
$\int \frac{1}{a^2 + x^2} dx$	$x = a \tan \theta$

Otherwise, choose a substitution for u so that

- ullet u and its derivative appears in the integral
- u appears in a bracket
- *u* appears in the denominator
- *u* is a function raised to the highest exponent

Integration by Parts

In a previous workbook on further differentiation, we saw the **product rule**, which was the technique for differentiating an expression of the form y = uv.

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

We can integrate the above with respect to x to give the following

$$\int \frac{dy}{dx} dx = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$

$$y = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$

$$uv = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$

$$uv - \int v \frac{du}{dx} dx = \int u \frac{dv}{dx} dx$$

This is given in the formula booklet.

By swapping sides, we arrive at the formula for integrating by parts:

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

We use this technique to integrate a product made up of two parts, u and $\frac{dv}{dx}$.

As a rule, choose u as the function that appears **highest** in the following 'LIATE' list.

L	L ogarithmic functions, e.g. $ln(3x)$
I	Inverse trigonometric functions, e.g. $tan^{-1}(2x)$
Α	Algebraic functions (simple polynomials), e.g. $3x^2 - 5x + 8$
Т	T rigonometric functions, e.g. $\sin(5x)$
E	E xponential functions, e.g. e^{7x}

Example 5

Find

$$\int 5x\cos x\,dx.$$

Answer: The integral is a product of two expressions, so we can attempt to use integration by parts to find a solution.

Let
$$u = 5x$$
 $\frac{dv}{dx} = \cos x$ $\frac{du}{dx} = 5$ $v = \sin x$

Then

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int 5x \cos x \, dx = 5x \times \sin x - \int \sin x \times 5 \, dx$$

$$\int 5x \cos x \, dx = 5x \sin x - \int 5 \sin x \, dx$$

$$\int 5x \cos x \, dx = 5x \sin x - -5 \cos x + c$$

$$\int 5x \cos x \, dx = 5x \sin x + 5 \cos x + c$$

$$\int 5x \cos x \, dx = 5(x \sin x + \cos x) + c$$

Theory

Exercise 5

Find

$\int 7xe^{3x}dx.$	

Example 6

Find

$$\int x^2 e^x dx.$$

Answer: Let

$$u = x^{2}$$
 $\frac{dv}{dx} = e^{x}$ $\frac{du}{dx} = 2x$ $v = e^{x}$

Then

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$
$$\int x^2 e^x dx = x^2 \times e^x - \int e^x \times 2x dx$$
$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$$

Now for $\int 2xe^x dx$ we must integrate by parts again.

Let

$$u = 2x$$
 $\frac{dv}{dx} = e^x$ $\frac{du}{dx} = 2$ $v = e^x$

Then

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$
$$\int 2x e^x dx = 2x \times e^x - \int e^x \times 2 dx$$

 $\int 2x e^x dx = 2xe^x - \int 2e^x dx$ $\int 2x e^x dx = 2xe^x - 2e^x + c$

Therefore

 $\int x^2 e^x dx = x^2 e^x - (2xe^x - 2e^x + c)$ $\int x^2 e^x dx = x^2 e^x - 2xe^x + 2e^x + c$ $\int x^2 e^x dx = e^x (x^2 - 2x + 2) + c$

We can continue to add the constant of integration (Why?)

Exercise 6

Find

$\int e^x \sin x dx.$

(C4 Summer 2010)

7.		Find $\int x^3 \ln x dx$.	[4]
	(b)	\mathbf{c}^2	[5]
•••••	***************************************		*******
•••••			******
•••••			*******
•••••	***************************************		*******
			•••••
•••••			•••••
•••••			•••••

Ysgol y Creuddyn	The Mathematics Department

(C4 Summer 2005)

7. (a) Use the substitution u = 2x - 1 to evaluate

$$\int_0^1 x(2x-1)^9 \, \mathrm{d}x \quad . \tag{5}$$

- (b) (i) Find $\int x \cos 2x \, dx$. [4]
 - (ii) Use the result of (b)(i) to find

$\int x \cos^2 x dx .$	[3]
	,

Ysgol y Creuddyn	The Mathematics Department

(C4 Summer 2011)

7. (a) Find $\int x \sin 2x dx$	1x. [4]
-----------------------------------	---------

Use the substitution $u = 5 - x^2$ to evaluate *(b)*

$\int_0^2 \frac{1}{(3)^2}$	$\frac{x}{5-x^2)}$	$\frac{1}{3}$ dx.					[4]

$\int_0^{\infty} (5-x^2)^3 dx$	1
	• • • •
	• • • •
	• • • •
	• • • •
	• • • •
	• • • •
	• • • •

(C4 Summer 2012)

7.	(a)	Find	$\int x e^{-2x} dx.$	[4]
----	-----	------	----------------------	-----

(b) Use the substitution $u = 1 + 3 \ln x$ to evaluate

$$\int_1^e \frac{1}{x(1+3\ln x)} \mathrm{d}x.$$

Give your answer correct to four decimal places.	[4]

(C4 Summer 2016)

6. (a) Find
$$\int (2x+1)e^{-3x} dx$$
. [4]

(b) Use the substitution $u = 4 + 5 \tan x$ to evaluate

$\int_0^{\frac{\pi}{4}} \frac{\sqrt{4+5\tan x}}{\cos^2 x} \mathrm{d}x.$	[4]

Ysgol y Creuddyn	The Mathematics Department

(C4 Summer 2014)

7. (a)	Find	$\int x^4 \ln 2x \mathrm{d}x.$	[4]
--------	------	---------------------------------	-----

(b) Use the substitution $u = 10 \cos x - 1$ to evaluate

$\int_0^{\frac{\pi}{3}} \sqrt{(10\cos x - 1)} \sin x \mathrm{d}x.$	[4]

	•••••

(C4 Summer 2008)

6. (a) Find
$$\int (3x+1) e^{2x} dx$$
. [4]

(b) Use the substitution $x = 3\sin\theta$ to show that

$$\int_{1.5}^{3} \sqrt{9 - x^2} \, \mathrm{d}x = \int_{a}^{b} k \cos^2 \theta \, \mathrm{d}\theta \quad ,$$

where the values of the constants a, b and k are to be found.

Hence evaluate	$\int_{1.5}^{3} \sqrt{9 - x^2} \mathrm{d}x \ .$		[8]

Ysgol y Creuddyn	The Mathematics Department

X @mathemateg Page 23

(C4 Summer 2007)

7. (a) Find
$$\int x^2 \ln x \, dx$$
 [4]

(b) Use the substitution $x = 2\sin\theta$ to show that

$$\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx = \int_0^a k \sin^2 \theta d\theta ,$$

where the values of a and k are to be determined.

	Hence, or otherwise, evalu	$\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}}$	dx.	[8]
				 ••••••

				••••••
				 ••••••
•••••				

Ysgol y Creuddyn	The Mathematics Department

 (Unit 3 Summer 2022)

1	8	l a	Use a suitable substitution to find
	_	_ u	Tool a dallable dabolitation to fine

$$\int \frac{x^2}{\left(x+3\right)^4} \, \mathrm{d}x \,. \tag{5}$$

b) H	lence eva	aluate •	$\int_0^1 \frac{x^2}{(x+3)}$	$\sqrt{4} dx$.				[2]
 					 		 	••••
 *****************			•••••		 ***************************************		 •••••	***************************************
 					 		 	••••
 •••••					 		 	•••••
 •••••					 		 	•••••
 •••••					 		 	••••
 •••••			•••••		 ***************************************	•••••	 •••••	•••••

(Unit 3 Summer 2018)

`		•	
1 4] Eva	aluate	
	a)	$\int_1^2 x^3 \ln x \mathrm{d}x .$	[6]
	b)	$\int_0^1 \frac{2+x}{\sqrt{4-x^2}} \mathrm{d}x \ .$	[6]

	************		•••••
	************		•••••

	•••••		

	•••••		

			•••••
			•••••

Ysgol y Creuddyn	The Mathematics Department

(Unit 3 Summer 2019)

1 4 a) Find
$$\int (e^{2x} + 6\sin 3x) dx$$
. [2]

b) Find
$$\int 7(x^2 + \sin x)^6 (2x + \cos x) dx$$
. [1]

c) Find
$$\int \frac{1}{x^2} \ln x \, dx$$
. [4]

d) Use the substitution $u = 2\cos x + 1$ to evaluate

$$\int_0^{\frac{\pi}{3}} \frac{\sin x}{(2\cos x + 1)^2} \, \mathrm{d}x \ . \tag{4}$$

Ysgol y Creuddyn	The Mathematics Department