

and Implicit

Equations

Name:

What is the work?

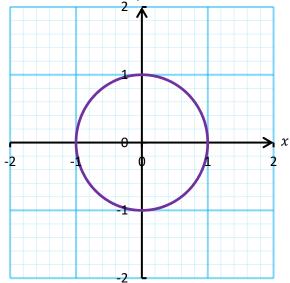
Finding the equation of tangents and normals to curves that are defined **parametrically** or **implicitly**. Converting between Cartesian and parametric forms.

What is required before starting?

GCSE Work: Substitution, solving equations, changing the subject. **A Level Unit 3:** Differentiation.

Where does this lead to?

Parametric equations can model movement that is circular in nature, or movement that returns to the same location.


Thus far, we have been differentiating functions of the form y=f(x), where there is one value of y for each value of x. Not every curve is of this type however; consider the equation $x^2+y^2=1$ that gives the unit circle. To try to differentiate this function, we could attempt to re-arrange it to the form y=f(x):

$$y^2 = 1 - x^2$$
$$y = \pm \sqrt{1 - x^2}$$

This is not an **explicit** function, as there are two values of y for each value of x. For example, if x=0, we have

$$y = \pm \sqrt{1 - 0^2}$$

$$y = \pm 1$$

This can be seen on the graph as the points (0,1) and (0,-1) lie on the circle. Because it is not explicit what the value of y is for each value of x, we say that $x^2 + y^2 = 1$ is an **implicit** equation.

Differentiating Implicit Equations

How do we differentiate $x^2 + y^2 = 1$ with respect to x? There is no problem in differentiating x^2 with respect to x: this would give us 2x. We could also differentiate 1 with respect to x to give 0. But how do we differentiate y^2 with respect to x? To see how, let us define z as $z = y^2$. We can differentiate z with respect to y:

$$\frac{dz}{dy} = 2y$$

Then, we can use the chain rule to differentiate z with respect to x:

$$\frac{dz}{dx} = \frac{dz}{dy} \times \frac{dy}{dx}$$
$$\frac{dz}{dx} = 2y \times \frac{dy}{dx}$$

Theory

So, to differentiate z with respect to x, we differentiate it with respect to y, and then multiply by $\frac{dy}{dx}$.

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2) \times \frac{dy}{dx}$$

In general, to differentiate any function of y with respect to x, we differentiate it with respect to y, and then multiply by $\frac{dy}{dx}$.

$$\frac{d}{dx}(f(y)) = \frac{d}{dy}(f(y)) \times \frac{dy}{dx}$$

Returning to the equation of a unit circle, $x^2 + y^2 = 1$, when we differentiate it with respect to x, we obtain

$$2x + 2y \times \frac{dy}{dx} = 0$$

We can re-arrange this to find $\frac{dy}{dx}$:

$$2y \times \frac{dy}{dx} = -2x$$
$$\frac{dy}{dx} = \frac{-2x}{2y}$$
$$\frac{dy}{dx} = -\frac{x}{y}$$

Given a point that lies on the circle, we can substitute the point into $\frac{dy}{dx}$ to find the gradient of the circle at that point. For example, on the previous page we saw that the point (0,1) lies on the circle. Here we have

$$\frac{dy}{dx} = -\frac{0}{1}$$
$$\frac{dy}{dx} = 0$$

We can now (for example) find the equation of the tangent to the circle at the point (0,1):

$$y - y_1 = m(x - x_1)$$

 $y - 1 = 0(x - 0)$
 $y - 1 = 0$
 $y = 1$

This is a horizontal line that goes through the point (0, 1).

Example I

Find
$$\frac{dy}{dx}$$
 for the curve $3x^2 + 5y^2 = 7$.

Answer: By differentiating implicitly:
$$6x + 10y \times \frac{dy}{dx} = 0$$

$$10y \times \frac{dy}{dx} = -6x$$

$$\frac{dy}{dx} = \frac{-6x}{10y}$$

$$\frac{dy}{dx} = -\frac{3x}{5y}$$

Exercise I

(a) Find $\frac{dy}{dx}$ for the curve $8x^2 + 2y^2 = 10$.	
	••••

(b) The point $(-1,1)$ lies on the curve $8x^2 + 2y^2 = 10$. Find the equation of the tangent to the curve $8x^2 + 2y^2 = 10$ at the point $(-1,1)$.	
Exercise 2 Find the equation of the normal to the curve $4x^2 + 3y^2 - 7x + 2y = 13$ at the point $(1, 2)$. Write your answer in the form $y = mx + c$.	
	••••
	••••
	••••
	••••
	••••
	•••••
	•••••

Parametric Equations

The **parametric equations** for a curve define the coordinates of the curve using a third variable, usually t, which represents the **parameter**.

$$x = f(t)$$
$$y = g(t)$$

For example, we could represent the unit circle using the following parametric equations.

$$x = \cos(t)$$
$$y = \sin(t)$$

The following table shows the value of x and y for various values of t, starting at t=0, and going up in increments of 0.1. (The values are shown correct to four decimal places, with the angle t in radians). These are plotted as the purple coordinates

on the graph on the right. (To plot the entire circle, the value of t would need to reach 2π .)

		2 <i>y</i>			
		1	t =	t = 0.5	
-2	-1	0		t = 0	> x
		-1			
		_2			

t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	I
x		0.9950	0.9801	0.9553	0.9211	0.8776	0.8253	0.7648	0.6967	0.6216	0.5403
y	0	0.0998	0.1987	0.2955	0.3894	0.4794	0.5646	0.6442	0.7174	0.7833	0.8415

To find the gradient of the curve at any point, we can differentiate the functions f(t) and g(t) with respect to t:

$$\frac{dx}{dt} = f'(t)$$
$$\frac{dy}{dt} = g'(t)$$

We can then use the chain rule to find the gradient:

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

where

$$\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}}$$

For the above example, we have

$$\frac{dx}{dt} = -\sin(t)$$

$$\frac{dy}{dt} = \cos(t)$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$\frac{dy}{dx} = \cos(t) \times \frac{1}{-\sin(t)}$$

$$\frac{dy}{dx} = -\cot(t)$$

If (for example)
$$t=1$$
, then $\frac{dy}{dx}=-\cot{(1)}$
$$\frac{dy}{dx}=-0.6421 \text{ to 4 decimal places.}$$

The table uses values of t from zero upwards, but it is important to note that t could also take negative values.

Theory

To find the equation of the normal to the curve at the point where t=1, we can use the following information from the previous page:

If
$$t = 1$$
, then (to 4 decimal places) $x = 0.5403$, $y = 0.8415$, $\frac{dy}{dx} = -0.6421$

The gradient of the normal is $-\frac{1}{-0.6421} = 1.5574$ (which is the negative reciprocal of $\frac{dy}{dx}$).

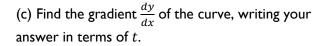
The equation of the normal at the point where t = 1 is $y - y_1 = m(x - x_1)$

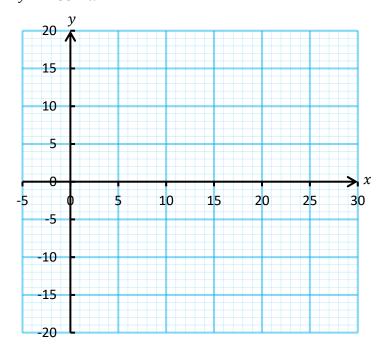
$$y - 0.8415 = 1.5574(x - 0.5403)$$

$$y - 0.8415 = 1.5574x - 0.8415$$

$$y = 1.5574x$$

Exercise 3


A curve is defined by the following parametric equations.


$$x = t^2$$
$$y = 2t + 3$$

(a) Complete the following table.

t	0	2	3	4	5
x					
у					

(b) Use the above table to plot a part of the curve on the graph paper on the right.

(d) Find the equation of the tangent to the curve at the point where t=2.

(e) Find the equation of the normal to the curve at the point where t=4.

Writing Parametric Equations as a Cartesian Equation

Sometimes, it is possible to transform a set of parametric equations to be one Cartesian equation, which avoids using the original parameter, and uses only x and y.

Example 2

On page 5, the following parametric equations were used to define the unit circle.

$$x = \cos(t)$$

$$y = \sin(t)$$

To delete the parameter t from these equations, we can use the identity $\sin^2(t) + \cos^2(t) = 1$ from Unit 1:

$$y^2 + x^2 = 1$$

$$x^2 + y^2 = 1$$

This is the equation for the unit circle from page 2.

Example 3

In Exercise 3, the following parametric equations were used to define a curve.

$$x = t^2$$

$$y = 2t + 3$$

To delete the parameter t from these equations, we can re-arrange the second equation to make t its subject:

$$y - 3 = 2t$$

$$\frac{y-3}{2}=t$$

We can then substitute for t into the first equation:

$$x = \left(\frac{y-3}{2}\right)^2$$

$$x = \frac{(y-3)^2}{2^2}$$

$$x = \frac{(y-3)(y-3)}{4}$$
$$4x = y^2 - 3y - 3y + 9$$

$$4x = v^2 - 3v - 3v + 0$$

$$4x = y^2 - 6y + 9$$

$$4x - y^2 + 6y - 9 = 0$$

Exercise 4

A curve is defined by the parametric equations

$$x = t^2 - 3$$

$$y = t + 2$$

Find the Cartesian equation that defines this curve.

(C3 Winter 2010)

3.	(a)	The curve	C	is	defined	by
-----------	-----	-----------	---	----	---------	----

$$y^{3} + 2x^{3}y = 3x^{2} + 4x - 3.$$
Find the value of $\frac{dy}{dx}$ at the point (2, 1).

 	 •••••
 	 •••••
	 •••••
	 •
	 •

	• • • • • • • • • • • • • • • • • • • •
	•••••
	 •

(C3 Winter 2012)

3. (a) A function is defined parametrically by

$$x = 3t^2$$
, $y = t^6 - 4t^3$.

(i) Find $\frac{dy}{dx}$ in terms of t.

(ii) Given that $\frac{dy}{dx} = \frac{7}{2}$, show th	at $2t^4 - 4t - 7 = 0$.	[5]

_	_		

(C3 Summer 2014)

4.	Given that $x = 2e^t - 5$, $y = 8e^{-t} + 3e^t - 4$, find the value of t when $\frac{dy}{dx} = -1$.	
	Give your answer correct to three decimal places.	[7]

•••••		

•••••		
•••••		

(C3 Summer 2006)

- 3. (a) Given that $x = \cos t$, $y = \sin 2t$, find $\frac{dy}{dx}$ in terms of t. [4]
 - (b) Given that

$$x^4 + 2 x^2 y + y^2 = 21,$$

			x + 2x + y +	y = 21,		
find	$\frac{\mathrm{d}y}{\mathrm{d}x}$	in terms of x and y .				[4]
 •••••	***********				 	

 •••••					 	
 •••••					 	
 •••••	**********				 	
 •	***********				 	
 ••••					 	

(C3 Winter 2008)

-			
3.	(a)	Given that $x = t^4 + 1$, $y = e^{2t} + 5$, find $\frac{dy}{dx}$ in terms of t .	[4]
	<i>(b)</i>	Given that $x^4 + \sin y + x^2 y^3 = 9$, find $\frac{dy}{dx}$ in terms of x and y.	[3]
*************	•••••		
***************************************			•••••
************			***********

***************************************	•••••		
************			***********
***************************************			***********
***********	•••••		**********

(C3 Summer 2008)

3. Given that	
	₽

$x^2 + x\sin y + y^3 = \pi^3 + 1,$	
find the value of $\frac{dy}{dx}$ at the point $(1, \pi)$.	[4]

(Unit 3 Summer 2024)

11. A curve is defined parametrically by

$$x = 2\theta + \sin 2\theta$$
, $y = 1 + \cos 2\theta$.

	(a)	Show that the gradient of the curve at the point with parameter θ is $- an heta$.	[6]
•••••			
• • • • • • • • • • • • • • • • • • • •			
•••••			
•••••			
	•••••		
•••••			
•••••			•••••
•••••			

	(b)	Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$.	[4]
•••••	***************************************		

•••••	••••		
*****	•••••		
•••••	•••••		
*****	***************		
•••••	•••••		
•••••	**************		
•••••	•••••		
•••••	****************		
•••••	•••••		
*****	***************		
•••••	*****************		
•••••	***************************************		
*****	•••••		

(Unit 3 Summer 2023)

The curve C_2 has parametric equations $x=4q,y=2q.$ Find the Cartesian coordinates of the points of intersection of C_1 and C_2 .	
Find the Cartesian coordinates of the points of intersection of C_1 and C_2 .	
	[7]
	,
	•••••

(Unit 3 Summer 2022)

1	6	The parametric equations of the curve C are
	_	The parametre equations of the curve of the

$$x = 3 - 4t + t^2$$
, $y = (4 - t)^2$.

a) Find the coordinates of the points where C meets the y-axis. [3]

b)	Show that the x -axis is a tangent to the curve C .	[5]
 •••••		
 		,
 •		
 •		
 •••••		
 •••••		
 •••••		
 •••••		
 		,
 •••••		

Ysgol y Creuddyn	The Mathematics Department

[2]

(Unit 3 Summer 2018)

1	0	The equation of a curve C is given by the parametric equatio	ns
---	---	--	----

$$x = \cos 2\theta$$
, $y = \cos \theta$.

- a) Find the Cartesian equation of C.
- b) Show that the line x y + 1 = 0 meets C at the point P, where $\theta = \frac{\pi}{3}$, and at the point Q, where $\theta = \frac{\pi}{2}$. Write down the coordinates of P and Q. [5]

c)	Determine the equations of the tangents to C at P and Q. Write down the coord of the point of intersection of the two tangents.	linates [7]

Ysgol y Creuddyn	The Mathematics Department

Ysgol y Creuddyn	The Mathematics Department

[6]

(Unit 3 Summer 2019)

- **0 6** A curve *C* has parametric equations $x = \sin \theta$, $y = \cos 2\theta$.
 - a) The equation of the tangent to the curve C at the point P where $\theta = \frac{\pi}{4}$ is y = mx + c. Find the exact values of m and c.

	b)	Find the coordinates of the points of intersection of the curve C and the straight line $x + y = 1$.

•••••	***************************************	
•••••	***************************************	

Ysgol y Creuddyn	The Mathematics Department

X @mathemateg Page 23

(C3 Winter 2009)

3.	(a)	Given that $x^2 + 3xy + 2y^2 - 2x = 13$, find the value of $\frac{dy}{dx}$ at the point $(1, 2)$. [4]
	(b)	Given that $x = 2e^t + 6$, $y = 4e^{2t} + 3e^t + 1$, find the value of t when $\frac{dy}{dx} = 6$, giving your answer correct to three decimal places. [7]

	• • • • • • • • • • • • • • • • • • • •	
*************	•••••	
	•••••	
************	•••••	

***********	•••••	
	•••••	
	•••••	

	•••••	
	•••••	
***************************************	•••••	
***************************************	•••••	
	•••••	
	•••••	
*************	•••••	