The Mathematics Department

The End
of Year 8

Chapter	Mathematics	Page Number
Directed Numbers	Ordering Directed Numbers. 'Less than' and 'More than'. Calculating with Directed Numbers (Addition; Subtraction; Multiplication; Division).	3
Decimals	Adding and Subtracting Decimals. Multiplying and Dividing Decimals by a Whole Number Less Than 10. Ordering Decimals. Converting between Percentages and Decimals. Rounding Off to a Specified Number of Decimal Places.	9
Angles 2	Revision of Year 7 work. Angles with Parallel Lines.	14
Transformations: Rotation	Rotating a Shape Around a Specific Point.	17

Numbers with a - sign before them are negative numbers.
Other numbers (with the exception of zero) are positive numbers. Sometimes we write positive numbers with a + sign before them, e.g. +5.

Zero is neither positive nor negative.
We can show positive and negative numbers on a number line:

Exercise 1

Write the following numbers in order, from least to greatest.

(a) $4,-3,1,-5,2$
(b) $-1,4,0,-2,3$
(c) $-2,4,-5,5,3$
(d) $-4,7,-8,9,-3$
(e) $0,-12,14,1,-3$
(f) $-25,27,-21,29,-23$
(g) 102, $-94,-120,96,-100$
(h) $35,-42,17,-54,26$
(i) $-35,-32,-38,-37,-33$
(j) $-3,5,-9,-1,4$
(k) $-14,17,-12,13,-15$
(I) $276,-156,623,-312,76$

'Less than' and 'Greater than'

It is possible to write the symbols < or > between two different numbers. The symbol < means 'less than'. The symbol > means 'greater than'.

Example

7 is less than 10 , so we can write $7<10$.
3 is greater than -4 , so we can write $3>-4$.

Exercise 2

Write the symbol < or > between the following pairs of numbers.
(a) 8 \qquad 18
(b) 17 \qquad 11
(c) 4 -2
(e) -2 \qquad -4
(f) -5 \qquad -1
(g) -3 \qquad 0
(i) -5 \qquad -8
(j) 7 \qquad -8
(k) -102 \qquad -98
(m) -4 \qquad 8
(n) -12 \qquad -3
(o) 87 \qquad 165
(d) 3 \qquad -5

Exercise 3

True or False?
(a) $8>5$
(b) $3>9$
(c) $-4>2$
(d) $-8<-5$
(e) $-10>-7$
(f) $-4<8$
(g) $9>-14$
(h) $-21>-19$
(i) $-12<10$
(j) $180<-190$
(k) $-120>-90$
(I) $-4<-3$
(m) $-4>-7$
(n) $0<-4$
(o) $8>0$
(p) $-9>-11$

Challenge! !
Search for "Cool Cash Confusion" on the internet. Write a short report on your findings.

Exercise 4

Fill in the blanks in the following table.

Temperature at 10:00	Temperature at 17:00	Change in temperature
$12^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$ increase
$18^{\circ} \mathrm{C}$		$3^{\circ} \mathrm{C}$ decrease
$4^{\circ} \mathrm{C}$	$-3^{\circ} \mathrm{C}$	
	$-1^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$ increase
$-9^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{C}$	
$-8^{\circ} \mathrm{C}$		$4^{\circ} \mathrm{C}$ decrease
	$3^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{C}$ increase

Calculating with Directed Numbers

Two sided counters have a yellow face and a red face. The yellow face represents +1 (positive one) and the red face represents -1 (negative one).

Example

One yellow counter and one red counter gives a zero pair. It is possible to remove or add zero pairs to any set of counters without affecting the value of the counters.

Exercise 5

Which numbers are shown below?

(d)

(g)

Speaking Sums

Example

$3+-2$
'Three add negative two'
$3--2$
'Three subtract negative two'
$-3--2$
'Negative three subtract negative two'

Exercise 6

Write down how you would say the following sums.
(a) $8+2$
(b) $8-2$
(c) $-8+2$
(d) $-8-2$
(e) $8+-2$
(f) $8--2$
(g) $-8+-2$
(h) $-8--2$

It is possible to use two sided counters to find the answers to addition or subtraction sums involving negative numbers.

Example

$3+-2$
Start with 3 yellow counters

Add 2 red counters

Remove any zero pairs

Count what is left: 1
Count what is left: 5

Exercise 7

Use two sided counters to answer the following sums.
(a) $5+2$
(b) 5-2
(c) $5+-2$
(d) $-5+-2$
(e) $-5+2$
(f) $5--2$
(g) $-5--2$
(h) $-5-2$
(i) $2+5$
(j) $2-5$
(k) $-2+5$
(I) $-2+-5$
(m) $2+-5$
(n) $-2-5$
(o) $-2--5$
(p) $2--5$

Exercise 8

Use two sided counters to answer the following sums.
(a) $6+-4$
(b) $7+-3$
(c) $5+-3$
(d) $6+-1$
(e) $-6+-4$
(f) $-7+-3$
(g) $-5+-3$
(h) $-6+-1$
(i) Complete the following sentence: Adding a negative number is the same as \qquad .

Exercise 9

Use two sided counters to answer the following sums.
(a) $4--3$
(b) $3--4$
(c) $5--2$
(d) $1--7$
(e) $-4--3$
(f) $-3--4$
(g) $-5--2$
(h) $-1--7$
(i) Complete the following sentence: Subtracting a negative number is the same as \qquad .

Adding and Subtracting Negative Numbers

Example

(a) $9+-2=9-2$
(b) $-4+-3=-4-3$
(c) $7--2=7+2$
(d) $-4--1=-4+1$
$=7$
$=-7$
$=9$

$$
=-3
$$

Exercise 10

(a) $4+-2$
(b) $10+-2$
(c) $9+-4$
(d) $2+-9$
(e) $-5+-2$
(f) $-9+-2$
(g) $-3+-3$
(h) $-1+-7$
(i) $6+-8$
(j) $2+-5$
(k) $9+-11$
(I) $7+-7$
(m) $-14+-3$
(n) $-18+-8$
(o) $-24+-8$
(p) $-38+-5$

Exercise 11
(a) 6--4
(b) $8--4$
(c) $1--3$
(d) $4--5$
(e) $-8--2$
(f) $-7--3$
(g) $-2--9$
(h) $-6--2$
(i) $-2--5$
(j) $-4--8$
(k) $-1--2$
(I) $-8--8$
(m) $-20--5$
(n) $-2--17$
(o) $14--8$
(p) $-101--4$

Exercise 12

(a) $8+-3$
(b) $8--3$
(c) $-8+-3$
(d) $-8--3$
(e) $14--2$
(f) $2--14$
(g) $14+-2$
(h) $2+-14$
(i) $-7+-9$
(j) $-7--9$
(k) $-9+-7$
(I) $-9--7$
(m) $24--2$
(n) $-12+-2$
(o) $-9--12$
(p) $3+-8$
(q) $2.5+-0.3$
(r) $5.4--1.2$
(s) $-2.1--0.5$
(t) $-4.2+-0.7$
(u) $25+-2+-3$
(v) $25+-2--3$
(w) $25--2--3$
(x) $25--2+-3$

Challenge! $/$!
What should the answers be to the following?
(a) $16++4$
(b) $16-+4$
(c) $1+-2--3+-4--5$

Exercise 13

(a) In a golf championship, players complete four rounds of golf on the golf course.

Out of the following four players, who has the best score? (In golf, the lower the score, the better the score.)

Name	Round 1	Round 2	Round 3	Round 4
Jordan Speith	+2	-3	-1	+1
Rickie Fowler	-2	-1	+4	-3
Rory Mcllroy	0	-3	+1	-2
Justin Rose	-3	+2	+4	-2

(b) The temperature at midnight in Llanrwst was recorded each day during one week in January.

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$-3^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$-3^{\circ} \mathrm{C}$	$-2^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$4^{\circ} \mathrm{C}$

What was the mean temperature at midnight in Llanrwst during this week?
(c) At the end of May, Trefor had $£ 200$ in his bank account. He spent $£ 800$ during the first week of June. He was paid $£ 500$ during the second week of June. In the third week, he spent $£ 400$. During the final week of June, he was paid £900. How much money has Trefor got in his bank account at the end of June?

Multiplying and Dividing Directed Numbers

Exercise 14 (Revision)

(a) 5×6
(b) 7×2
(e) 9×4
(f) 2×9
(i) 8×7
(j) 9×6
(m) 5×9
(n) 12×6
(c) 3×8
(d) 6×7
(g) 4×7
(k) 8×9
(o) 8×11
(h) 7×7
(I) 10×8
(p) 9×7

Remember! The ttrockstars

Multiplying Directed Numbers

What is $3 x-5$?
We can think of 3×-5 as 'three lots of negative five', which is three rows of five red counters. We can see from the diagram below that this gives -15 . So, $5 \times-3=-15$.

In general, multiplying a positive number by a negative number gives a negative answer.
What is -3×5 ?

The order in which we multiply numbers is not important, so we can think of -3×5 as 5×-3, which is five rows of three red counters. We can see from the diagram below that this gives -15 . So, $-3 \times 5=-15$.

In general, multiplying a negative number by a positive number gives a negative answer.

What is $-3 x-5$?

$$
\begin{aligned}
-3 \times-5 & =-1 \times 3 \times-5 \\
& =-1 \times-15 \\
& =15
\end{aligned}
$$

Write the -3 as -1×3
Calculate $3 \times-5=-15$
Multiplying by -1 changes the sign of the number / changes the colour of the counters In general, multiplying a negative number by a negative number gives a positive answer.

Example

(a) $8 \times-3=-24$
(b) $-4 \times 5=-20$
(c) $-6 \times-2=12$

Exercise 15

(a) 7×-3
(b) -3×7
(c) -3×-7
(d) -7×-3
(e) 4×-8
(f) -2×6
(g) -4×-6
(h) 6×-8
(i) -9×3
(j) -7×-5
(k) -9×-4
(I) -5×8
(m) 11×-2
(n) 4×12
(o) -9×6
(p) -8×7
(q) -8×-8
(r) 12×-6
(s) -7×9
(t) -5×-9
(u) 13×-3
(v) -1×10
(w) -8×0
(x) -1×-1
(y) 9×-8
(z) -14×-3
(α) -6×5
(β) 15×-6

Exercise 16

Evaluate the answers to the following. Use your calculator to check your answers.
(a) $8+-5$
(b) $8--5$
(c) 8×-5
(d) -8×-5
(e) $-4+-2$
(f) $-4--2$
(g) -4×-2
(h) -4×2
(i) 14×-2
(j) $14+-2$
(k) $-14+-2$
(I) $-14--2$
(m) $4--9$
(n) $-4+-9$
(o) -4×9
(p) 4×-9

Exercise 17

Write 10 different sums whose answer is 4.

Dividing Directed Numbers

The rules for dividing directed numbers are the same as for multiplication. These rules are shown in the diagram on the right.

Example

(a) $32 \div 4=8$
(b) $32 \div-4=-8$
(c) $-32 \div 4=-8$
(d) $-32 \div-4=8$

Exercise 18

(a) $16 \div-2$
(b) $-24 \div 4$
(c) $-12 \div-3$
(d) $-20 \div-5$
(e) $28 \div-4$
(f) $-30 \div 2$
(g) $36 \div-9$
(h) $-40 \div-10$
(i) $48 \div-6$
(j) $50 \div-25$
(k) $-39 \div-13$
(l) $64 \div-8$
(m) $66 \div-2$
(n) $-72 \div 8$
(o) $63 \div-7$
(p) $-80 \div-8$
(q) $-100 \div 20$
(r) $-120 \div-40$
(s) $2 \div-4$
(t) $0 \div-3$
(u) $-125 \div-5$
(v) $1000 \div 100$
(x) $-1 \div-10$
(y) $-7 \div 0$

Exercise 19

Calculate the following. (Be careful with the order of operations.)
(a) $8+2 \times-3$
(b) $8-2 \times-3$
(c) $-8 \times 2-3$
(d) $-8 \div-2--3$
(e) $3+6 \div-3$
(f) $-3+-6 \div 3$
(g) $3 \times 6 \div-3$
(h) $-3+-6--3$
(i) $(4+-2) \times-5$
(j) $4+(-2 \times-5)$
(k) $4+-2 \times-5$
(l) $(5 \times-6) \div(-20 \div 5)$

Exercise 20

Calculate the following.
(a) 2^{2}
(b) $(-2)^{2}$
(c) 2^{3}
(d) $(-2)^{3}$
(e) 2^{4}
(f) $(-2)^{4}$
(g) 2^{5}
(h) $(-2)^{5}$
(i) $(-1)^{2}$
(j) $(-1)^{3}$
(k) $(-1)^{4}$
(l) $(-1)^{50}$

Exercise 21

Complete the following tables.

\times	3	-6	
4	12		-32
	6		
5			
-10			

	2	-4	
16	8		2
	16		
-16			
48			

Exercise 22 (Revision)

(a) Write the following numbers in order, from least to greatest.
(i) $8,-2,-10,5,7$
(ii) $-3,6,-5,8,-7,0$
(iii) $23,-21,18,25,-4,-12,8,-1,3,-19$
(b) Write the symbol < or > between the following pairs of numbers.
(i) -3 \qquad 2
(ii) $-8 _-4$
(iii) -15 \qquad 12
(c) $8+-2$
(d) $14--3$
(e) 2×-3
(f) $-14 \div-2$
(g) $-8+-2$
(h) $-14--3$
(i) -2×-3
(j) $14 \div-2$
(k) Copy and complete the following sentences.
(i) Adding a negative number is the same as \qquad (ii) Subtracting a negative number is the same as \qquad
(iii) Multiplying a negative number by a positive number gives an answer that is \qquad
(iv) Dividing a negative number by a negative number gives an answer that is \qquad

Evaluation

Key Words

 Corrections I am happy with... I need to revise...
Revising Year 7 Work

Decimals

Exercise 23 (Adding Decimals)

(a) $37.24+42.41$
(b) $7.17+1.45$
(c) $26.725+97.476$
(d) $13.427+42.645$
(e) $8.23+24.14$
(f) $824.4+2.45$
(g) $2834.2+25.324$
(h) $52.498+8273.24$
(i) $0.23+39.2$
(j) $34+4.28$
(k) $2989.4+399.8$
(j) $0.23+0.062$

Exercise 24 (Subtracting Decimals)

(a) $46.87-12.31$
(b) $8.6-2.5$
(c) $274.66-52.4$
(d) $45.2-23.8$
(e) $18-6.3$
(f) $39-6.23$
(g) $6.4-5.21$
(h) $700.2-263.8$
(i) $200-12.625$
(j) $90-27.2$
(k) $7.2-0.06$
(I) $6.01-0.185$

Exercise 25 (Multiplying a Decimal by a Whole Number Less Than Ten)
(a) 43.27×5
(b) 9.3×4
(c) 2.65×2
(d) 823.4×6
(e) 723.45×8
(f) 92.463×9
(g) 8274.9×7
(h) 0.264×3
(i) 5.036×6
(j) 30.46×8
(k) -4.25×5
(I) -423.7×-9

Dividing a Decimal by a Whole Number Less Than Ten
In order to calculate a sum such as $26.3 \div 5$, follow these steps.

1. Set the sum out using a division frame; the 26.3 goes inside and the 5 goes outside.

2. Remember to add the decimal point in the correct position.

3. "How many times does 5 fit into 2 ?" 5 is too big to fit into 2 , so it fits in 0 times, with remainder 2 .

4. "How many times does 5 fit into 13?" It fits into thirteen 2 times, with remainder 3 . Note that we need to write an extra 0 before writing the remainder.

5. "How many times does 5 fit into 26?" It fits into twenty-six 5 times, with remainder 1 .

6. "How many times does 5 fit into 30?" It fits into thirty 6 times, with remainder 0 . So, the answer to $26.3 \div 5$ is 5.26 .

Exercise 26

(a) $7.35 \div 3$
(b) $26.88 \div 4$
(c) $842.6 \div 2$
(d) $213.5 \div 5$
(e) $252.6 \div 6$
(f) $75.6 \div 9$
(g) $341.84 \div 8$
(h) $29.61 \div 7$
(i) $2531.1 \div 6$
(j) $72.32 \div 8$
(k) $186.06 \div 3$
(I) $371 \div 5$
(m) $0.85 \div 2$
(n) $297 \div 4$
(o) $37941.75 \div 9$
(p) $305.004 \div 7$

Ordering Decimals

Which number is larger: 4.2 or 4.03 ?

No, 4.2 is the same as
4.03 is the largest number as 3 is greater than 2. 4.20. Now 20 is greater than 03 , so 4.2 is the largest number.

Exercise 27

Write the following numbers in order, from least to greatest.
(a) 4.2, 4.02, 4.03, 4.3
(b) $8.42,2.84,4.82,8.24,4.28,2.48$
(c) $7.503,7.053,7.53,7.005,7.3$
(d) $9.008,9.8,9.08,9$
(e) $3.96,3.09,3.6,3.06,3.096,3.009$
(f) $14.07,4.71,7.14,14.1,7.04,4.07$
(g) $0.26,0.18,0.3,0.21,0.33$
(h) $3.8,3.07,4.09,3.54,4.81,3.05$
(i) 23.7, 20.3, 21.78, 20.09, 22.7
(j) $0.9,0.78,0.98,0.09,0.87$
(k) $0.821,0.281,0.128,0.218,0.812$
(I) $0.7,0.68,0.702,0.689,0.73,0.679$
(m) 5.9, 6.8, 5.09, 5.83, 6.88
(n) $1.8,1.03,1.24,1.043,1.003,1.51$
(o) $45.08,5.8,45.8,5.004,45.50,5.08$

Exercise 28

	Runner 1	Runner 2	Runner 3	Runner 4
Canada	10.31 seconds	10.04 seconds	10.46 seconds	10.09 seconds
Jamaica	9.98 seconds	10.68 seconds	10.10 seconds	10.18 seconds
U.S.A.	10.06 seconds	10.13 seconds	10.24 seconds	10.01 seconds
France	10.53 seconds	10.96 seconds	10.42 seconds	10.18 seconds

The table above shows the times taken by each runner in a 400 m relay race at an athletics championship.
(a) How many different teams were competing?
(b) How many runners were in each team?
(c) Which runner, from which team, was fastest?
(d) Which runner was slowest?
(e) Which team won the relay race?
(f) Which team came last?

Exercise 29

Add some of the following decimals, aiming to reach a total as close as possible to 1.
You may only use each number once.

Converting a Percentage to a Decimal

In order to change a percentage to be a decimal, divide the percentage by 100.

Example

(a) As a decimal, 62% is $62 \div 100=0.62$.
(b) As a decimal, 3% is $3 \div 100=0.03$.

Exercise 30

Write the following percentages as decimals.

(a) 27%
(b) 86%
(c) 29%
(d) 35%
(e) 40%
(f) 8%
(g) 70%
(h) 2%
(i) 156%
(j) 250%
(k) 400%
(I) 0%
(m) 25.8%
(n) 4.7%
(o) 0.3%
(p) 0.08%

Converting a Decimal to a Percentage

In order to change a decimal to be a percentage, multiply by 100 and add the $\%$ symbol.

Example

(a) As a percentage, 0.45 is $0.45 \times 100=45 \%$.
(b) As a percentage, 0.06 is $6 \times 100=6 \%$.

Exercise 31

Write the following decimals as percentages.
(a) 0.31
(b) 0.57
(c) 0.73
(d) 0.66
(e) 0.2
(f) 0.9
(g) 0.04
(h) 0.09
(i) 3.54
(j) 5.5
(k) 6
(I) 12
(m) 0.728
(n) 0.035
(o) 0.002
(p) 0.0006

Exercise 32

Write the following numbers in order, starting from the smallest.

54%	0.35	7%	0.8	40%	0.09	2.1	92%

Rounding Off to a Specified Number of Decimal Places

Exercise 33

Complete the following table.

Original Number	Round off to the nearest unit	Round off to the nearest 10	Round off to one decimal place	Round off to two decimal places	Round off to three decimal places
432.4385	432	430	432.4	432.44	432.439
273.8924					
348.8753					
219.5541					
199.7502					
537.8025					
$1,549.1087$					
$3,845.6355$					
$10,293.54$					
$28,479.599$					

Exercise 34 (Revision)

(a) $154.2+87.9$
(b) 275.3-184.9
(c) 835.6×7
(d) $145.8 \div 6$
(e) Write the following numbers in order, from least to greatest.
4.1
3.05
3.5
3.124
4.12
4.214
3.99
(f) Change the following percentages to be decimals.
(i) 34%
(ii) 8%
(iii) 81%
(iv) 0.4\%
(g) Round off the number 283.4672
(i) to one decimal place
(ii) to two decimal places
(iii) to three decimal places.

2) Evaluation

Key Words

Exercise 35 (Revision of Year 7 work)

(a) An acute angle is any angle between \qquad - and \qquad $\stackrel{\circ}{\circ}$
(b) A \qquad angle is any angle that is exactly 90°.
(c) $A n$ \qquad angle is any angle between 90° and 180°.
(d) A straight line is any angle that is exactly \qquad ${ }^{\circ}$.
(e) A reflex angle is any angle between \qquad ${ }^{\circ}$ and \qquad $\stackrel{\circ}{\circ}$
(f) A \qquad is any angle that is exactly 360°.
(g) Name the angle labelled (g) in the diagram to the right. \qquad
(h) Measure the angle labelled (h) in the diagram to the right.
(i) What type of angle is angle (i) in the diagram to the right?
(j) Measure the reflex angle C $\widehat{D} E$ in the diagram to the right.
\qquad。
\qquad
(k) Draw an angle of 126° in the box below.
(I) Draw a right-angled triangle with angles of 30° and 60°.

(m) Calculate the size of the angles in the following diagrams. (The diagrams are not drawn to scale.)

(1) \qquad (2) \qquad (3) \qquad (4) \qquad - (5) \qquad - (6) \qquad
(n) An isosceles triangle has \qquad equal angles.
(o) The size of each angle in an equilateral triangle is \qquad ${ }^{\circ}$.
(p) Any triangle with no equal sides is named a \qquad triangle.

Angles with Parallel Sides

If a line crosses a pair of parallel lines, it is possible to recognise some links between some of the angles.
(2) Alternate Angles \square

Alternate angles are equal.
(3) Internal Angles

Internal angles add up to 180°.

Exercise 36

Calculate the size of the marked angles. (The diagrams are not drawn to scale.)
The transversal is the line that intersects the parallel lines.

(1)
) Corresponding Angles

Corresponding angles are equal.

Example

(a) 58° (alternate angles).

\bigcirc
(c) 72° (internal angles).

Exercise 37

Are the following pairs of angles corresponding angles, alternate angles or internal angles?
(a)

Exercise 38

Find as many angles as you can in the following diagram. (The diagram is not drawn to scale.)

Exercise 39

2) Evaluation

| Key Words | Corrections | I am happy with... | |
| :---: | :---: | :---: | :---: | :---: |
| | | | |

Rotation is one of the four transformations.

Year 7	Year 8	Year 9	Year 10
Translation	Rotation	Reflection	Enlargement

In order to rotate a shape, we need to know

- the centre of rotation, e.g. the point $(3,5)$;
- how to rotate the shape, e.g. 90° clockwise.

It is good practice to use a piece of tracing paper to complete a rotation question.

Example: Rotate the triangle ABC by 90° clockwise around the point $(-1,2)$.

Step 2: Place your pencil on the centre of rotation ($-1,2$) and rotate the tracing paper 90° clockwise.

Step 1: Place a piece of tracing paper over the grid and trace the shape $\mathbf{A B C}$.

Step 3: Draw the new shape on the squared paper.

Exercise 40

(a) Rotate the triangle ABC by 90° clockwise around the origin.

(c) Rotate the square ABCD by 180° clockwise around the origin.

(e) Would the answer to question (c) change if the word "clockwise" was changed to the word "counter-clockwise"?
(b) Rotate the triangle $\mathbf{A B C}$
by 90° counter-clockwise around the origin.

(d) Rotate the square ABCD by 270° counter-clockwise around the origin.

(f) Complete the sentence: a counter-clockwise rotation of 270° is the same as a clockwise rotation of \qquad ${ }^{\circ}$.

Exercise 41

(a) Rotate the rectangle ABCD by 90° clockwise around the point $(-1,2)$.

(c) Rotate the quadrilateral ABCD by 90° counter-clockwise around the point $(0,1)$.

(e) What is the name of the quadrilateral in question (c)?
(g) Calculate the area of the quadrilateral in question (c). Give your answer in square units.
(b) Rotate the triangle ABC by 180° counter-clockwise around the point $(-2,2)$.

(d) Rotate the quadrilateral ABCD by 270° counter-clockwise around the point $(2,-4)$.

(f) What is the name of the quadrilateral in question (d)?
(h) Calculate the area of the quadrilateral in question (d). Give your answer in square units.

Exercise 42

(a) Rotate the pentagon ABCDE by 90° clockwise around the point $(-1,1)$.

(b) What type of rotation changes the triangle $A B C$ to the triangle DEF?

(c) First, translate the triangle ABC using the column vector $\binom{-5}{-1}$. Then, rotate the translated triangle by 90° clockwise around the origin.

E Evaluation

