

GCE AS/A Level – LEGACY

0978/01

MATHEMATICS – FP2 Further Pure Mathematics

MONDAY, 24 JUNE 2019 – MORNING 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- · a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

© WJEC CBAC Ltd. CJ*(S19-0978-01)

Using the substitution $x = \sin^2 \theta$, evaluate the integral

$$\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{3 + \sin^4 \theta} d\theta.$$

Give your answer in the form $\frac{\pi}{M\sqrt{N}}$, where M and N are positive integers. [5]

2. The function f is given by

$$f(x) = x^2 - 2x + 2$$
.

- (a) Sketch a graph of y = f(x), indicating the coordinates of the minimum point. [2]
- The set S = [2, 5]. Determine (b)
 - (i) f(S),

(ii)
$$f^{-1}(S)$$
. [7]

(a) By putting $t = \tan\left(\frac{x}{2}\right)$, show that the equation 3.

$$3\sin x + \cos x = 2$$

can be written in the form

$$3t^2 - 6t + 1 = 0. ag{2}$$

(b) Hence find the general solution, correct to the nearest degree, of the equation

$$3\sin x + \cos x = 2. ag{6}$$

4. Using mathematical induction, prove de Moivre's Theorem, namely that (a)

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta,$$

where n is a positive integer.

[7]

Using de Moivre's Theorem, show that (b)

$$\cos 4\theta = a\cos^4\theta + b\cos^2\theta + c,$$

where *a*, *b*, *c* are integers to be determined.

[5]

5. The equation of the hyperbola H is

$$\frac{x^2}{4} - \frac{y^2}{16} = 1.$$

- (a) Show that the point $P(2\sec\theta, 4\tan\theta)$ lies on H, where θ is not an odd multiple of $\frac{\pi}{2}$. [1]
- (b) Find the eccentricity and the coordinates of the foci of H. [3]
- (c) The point (2, 0) is denoted by V. Show that the locus of the midpoint of PV as θ varies is a hyperbola having the same eccentricity as H. [6]
- **6.** The complex number w is equal to $\frac{1}{2}(-1+\sqrt{3}i)$.

(a) Show that
$$w^3 = 1$$
. [2]

- (b) Hence show that if u is a cube root of the complex number z then uw is also a cube root of z. [2]
- (c) (i) Verify that 1 + i is a cube root of -2 + 2i.
 - (ii) Using the result in part (b), find in Cartesian form the cube root of -2 + 2i lying in the 2nd quadrant of the Argand diagram.
 - (iii) State the argument of 1 + i and deduce the argument of the cube root of -2 + 2i lying in the 2nd quadrant.
 - (iv) Hence show that $tan 15^{\circ} = 2 \sqrt{3}$. [10]
- **7.** The function f is given by

$$f(x) = \frac{7x^2 + 4x + 2}{(2x+1)(3x+2)(x-3)}$$

- (a) Express f(x) in partial fractions.
- (b) Hence evaluate the integral

$$\int_0^1 f(x) dx$$

Give your answer correct to three significant figures.

[6]

[5]

- (c) (i) State the equations of all the asymptotes on the graph of *f*.
 - (ii) Show that there are no real values of x for which f(x) = 0.
 - (iii) Write down the range of f.
 - (iv) Sketch the graph of f. [6]