WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU General Certificate of Education Tystysgrif Addysg Gyffredinol Safon Uwch/Uwch Gyfrannol

MATHEMATICS FP3

Further Pure Mathematics
Specimen Paper 2005/2006
($1 \frac{1}{2}$ hours)

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

A calculator may be used for this paper.
A formula booklet is available and may be used
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Solve the equation

$$
\begin{equation*}
\cosh ^{2} x=3+\sinh x, \tag{7}
\end{equation*}
$$

expressing the roots as natural logarithms.
2. (a) By drawing appropriate graphs, show that the equation

$$
\begin{equation*}
x^{3}=\cot x \tag{3}
\end{equation*}
$$

has one root in the interval $(0, \pi / 2)$.
(b) Starting with an initial approximation $x_{0}=1$, use the Newton-Raphson method to calculate successive approximations x_{1}, x_{2} and x_{3} to this root. Write down the value of x_{3} correct to 6 decimal places and determine whether or not this gives the value of the root correct to 6 decimal places.
3. The arc joining the points $(0,0)$ and $(1,1)$ on the curve $y=x^{3}$ is rotated through four right-angles about the x-axis.
(a) (i) Show that the area of the curved surface generated is given by

$$
\begin{equation*}
2 \pi \int_{0}^{1} x^{3} \sqrt{1+9 x^{4}} \mathrm{~d} x \tag{2}
\end{equation*}
$$

(ii) Use the substitution $u=1+9 x^{4}$ to show this area is equal to

$$
\begin{equation*}
\frac{\pi}{27}(10 \sqrt{10}-1) \tag{6}
\end{equation*}
$$

4. Given that

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \mathrm{e}^{-2 x} \cos x \mathrm{~d} x \\
\text { and } \quad J & =\int_{0}^{\pi / 2} \mathrm{e}^{-2 x} \sin x \mathrm{~d} x
\end{aligned}
$$

use integration by parts to show that

$$
\begin{aligned}
& I=\mathrm{e}^{-\pi}+2 J \\
& \text { and } \quad J=1-2 I
\end{aligned}
$$

Hence evaluate I and J, giving each answer in the form $a+b \mathrm{e}^{-\pi}$, where a and b are rational numbers.
5. (a) Find the Maclaurin series of $\ln (1+\sin x)$ up to and including the x^{3} term.
(b) Use your series to evaluate, approximately, the integral

$$
\begin{equation*}
\int_{0}^{\frac{1}{3}} \ln (1+\sin x) \mathrm{d} x \tag{4}
\end{equation*}
$$

6. The curves C_{1} and C_{2} have polar equations as follows:

$$
\begin{array}{ll}
\mathrm{C}_{1}: r=1-\cos \theta & (-\pi \leq \theta \leq \pi) \\
\mathrm{C}_{2}: r=\cos 2 \theta & \left(-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}\right)
\end{array}
$$

(a) Sketch C_{1} and C_{2} on the same diagram.
(b) Find the area enclosed by C_{1}.
(c) Find the polar coordinates of the points of intersection of C_{1} and C_{2}.
7. (a) Show that

$$
\begin{equation*}
\frac{\sin n \theta-\sin (n-1) \theta}{\sin \theta}=\cos (n-1) \theta \tag{2}
\end{equation*}
$$

(b) Given that

$$
I_{n}=\int_{0}^{\pi} \frac{\sin n \theta}{\sin \theta} d \theta
$$

where n is an integer, show that for $n \geq 2$,

$$
\begin{equation*}
I_{n}=I_{n-2} . \tag{4}
\end{equation*}
$$

(c) Hence evaluate I_{n} when n is
(i) an even integer,
(ii) an odd integer.

