WELSH JOINT EDUCATION COMMITTEE
General Certificate of Education
Advanced Level/Advanced Subsidiary

CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol
Safon Uwch/Uwch Gyfrannol

MATHEMATICS C3

Pure Mathematics

Specimen Paper 2005/2006

$$
\text { (} 1 \frac{1}{2} \text { hours) }
$$

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

A calculator may be used for this paper.
A formula booklet is available and may be used.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Show that the equation

$$
x^{3}+10 x-4=0
$$

has a root α between 0 and 1 .
The iterative formula

$$
x_{n+1}=\frac{4-x_{n}^{3}}{10}
$$

with $x_{0}=0.3$ may be used to find α.
Calculate and record the values of $x_{1}, x_{2}, x_{3}, x_{4}$. Write down the value of x_{4} correct to five decimal places and show that it is the value of α correct to five decimal places.
2. Use Simpson's Rule with five ordinates to evaluate the integral

$$
\int_{1}^{2} \sqrt{1+x^{4}} \mathrm{~d} x
$$

Show your working and give your answers correct to two decimal places.
3. Solve the inequality

$$
\begin{equation*}
|2 x-5|<9 . \tag{4}
\end{equation*}
$$

4. (a) Given that

$$
y^{3}-x^{2} y^{2}=x^{2}+3 x+1,
$$

$$
\text { find } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { in terms of } x \text { and } y .
$$

(b) Given that $x=t^{3}+2, y=t^{2}+3$,
find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and show that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{2}{9 t^{4}} \tag{5}
\end{equation*}
$$

5. Showing all your working, find the values of θ between 0° and 360° satisfying

$$
\begin{equation*}
\cot ^{2} \theta=7-2 \operatorname{cosec} \theta . \tag{7}
\end{equation*}
$$

6. Differentiate the following with respect to x, simplifying your answers as much as possible.
(a) $\mathrm{e}^{2 x} \sin x$
(b) $\frac{2 x^{2}-4}{x^{2}+3}$
(c) $\tan \left(4 x^{2}+3\right)$
7. (a) Find
(i) $\int \mathrm{e}^{-4 x+1} \mathrm{~d} x$,
(ii) $\int\left(\frac{1}{2 x+1}+\frac{1}{(3 x+7)^{3}}\right) \mathrm{d} x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin 2 x \mathrm{~d} x$.
8. (a) Given that $y=\tan ^{-1} x$, show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x^{2}+1} . \tag{3}
\end{equation*}
$$

(b) Differentiate $\ln \left(x^{2}+1\right)$ with respect to x.
(c) Use the results derived in (a) and (b) to find

$$
\int \frac{3+x}{1+x^{2}} \mathrm{~d} x .
$$

9. Given that $\mathrm{f}(x)=\mathrm{e}^{x}$, sketch, on the same diagram, the graphs of $y=\mathrm{f}(x)$ and $y=2 \mathrm{f}(x)+3$. Label any points of intersection of the graphs with the y-axis. Indicate the behaviour of the graphs for large positive and negative values of x.
10. (a) The function f has domain $x \geq 2$ and is defined by

$$
\mathrm{f}(x)=\ln (2 x-3)+4
$$

(i) Find an expression for $\mathrm{f}^{-1}(x)$.
(ii) State the domain and range of $\mathrm{f}^{-1}(x)$.
(b) The functions g and h are defined for all x by

$$
\begin{aligned}
& \mathrm{g}(x)=x^{2}+3, \\
& \mathrm{~h}(x)=2 x+2 .
\end{aligned}
$$

Solve the equation

$$
\begin{equation*}
\operatorname{gh}(x)=2 \operatorname{hg}(x)+15 \tag{5}
\end{equation*}
$$

