WELSH JOINT EDUCATION COMMITTEE
General Certificate of Education
Advanced Level/Advanced Subsidiary

CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol
Safon Uwch/Uwch Gyfrannol

MATHEMATICS C1

Pure Mathematics

Specimen Paper 2005/2006
($1 \frac{1}{2}$ hours)

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

A formula booklet is available and may be used.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C have coordinates $(4,-2),(-12,10),(10,6)$, respectively.
(a) Find the gradients of the lines

$$
A B, B C, C A .
$$

(b) Show that one of the angles of triangle $A B C$ is a right-angle.
(c) Show that the equation of the line $A B$ is $3 x+4 y-4=0$.
(d) The mid-point of $B C$ is D. Find the length of $A D$.
2. Simplify

$$
\frac{2 \sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}
$$

expressing your answer in the form $a+\sqrt{b}$, where a and b are integers.
3. Use an algebraic method to solve the simultaneous equations

$$
\begin{aligned}
& y=x^{2}-3 x+2, \\
& y=3 x-7 .
\end{aligned}
$$

Interpret your answer geometrically.
4. Given that the equation

$$
2 k x^{2}+4 x+k-1=0
$$

has two distinct real roots, show that

$$
k^{2}-k-2<0 .
$$

Find the range of values of k satisfying this inequality.
5. (a) Express $2 x^{2}-12 x+25$ in the form $a(x-b)^{2}+c$, where a, b, c are constants to be determined.
(b) Find the least value of $2 x^{2}-12 x+25$ and the corresponding value of x.
(c) Sketch the curve $y=2 x^{2}-12 x+25$.
6. (a) Given that $x+2$ is a factor of

$$
\begin{equation*}
k x^{3}+8 x^{2}+3 x-2 \tag{3}
\end{equation*}
$$

show that $k=3$.
(b) Solve the equation

$$
\begin{equation*}
3 x^{3}+8 x^{2}+3 x-2=0 \tag{4}
\end{equation*}
$$

(c) Find the remainder when $3 x^{3}+8 x^{2}+3 x-2$ is divided by $x-3$.
7. (a) Using the binomial theorem, expand $(2 x+3)^{4}$, simplifying each term of the expansion.
(b) In the binomial expansion of $(1+3 x)^{n}$ the coefficient of x^{2} is 54 .

Given that $n>0$, find the value of n.
8. (a) Given that $y=x^{2}-4 x+2$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Differentiate $\frac{3}{x^{4}}+4 \sqrt{x}$ with respect to x.
9. The curve C has equation

$$
y=x^{4}+x+1 .
$$

Find the equation of the tangent to C at the point $(1,3)$.
10. The curve C has equation

$$
y=x^{3}-3 x^{2}-9 x+3
$$

(a) Find the coordinates and nature of the stationary points of C.
(b) Sketch C.

