ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Express $\frac{1}{n(n+1)}$ in partial fractions.
(b) Consider the series

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\ldots+\frac{1}{n(n+1)}
$$

Show that the sum of this series is given by $\frac{a n}{b n+1}$, where a, b are positive integers to be determined.
2. (a) Express $(2+\mathrm{i})^{4}$ in the form $a+\mathrm{i} b$, where a, b are real.
(b) Hence show that $2+\mathrm{i}$ is a root of the equation $x^{4}+2 x^{2}-32 x+65=0$.
(c) Determine the other three roots of this equation.
3. (a) Express $\frac{1+17 \mathrm{i}}{1+2 \mathrm{i}}$ in the form $a+\mathrm{i} b$, where a, b are real.
(b) Hence solve the equation

$$
2 \mathrm{i} z+3 \bar{z}=\frac{1+17 \mathrm{i}}{1+2 \mathrm{i}}
$$

where \bar{z} denotes the complex conjugate of z. Give z in trigonometric form with the values of r and θ correct to three significant figures.
4. The transformation T in the plane consists of a clockwise rotation through 90° about the origin, followed by a translation in which the point (x, y) is transformed to the point $(x-1, y+2)$.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{ccc}
0 & 1 & -1 \tag{3}\\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Determine the coordinates of the point which is transformed to the point $(1,-1)$ under T.
5. The roots of the cubic equation $x^{3}-2 x^{2}+4 x+3=0$ are denoted by α, β, γ.

Determine the cubic equation whose roots are $\frac{1}{\beta \gamma}, \frac{1}{\gamma \alpha}, \frac{1}{\alpha \beta}$.
6. The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left[\begin{array}{lll}
\lambda & 1 & 2 \\
4 & \lambda & 1 \\
5 & 2 & 3
\end{array}\right] \text {, where } \lambda \text { is a constant. }
$$

(a) (i) Find an expression for the determinant of \mathbf{M} in terms of λ.
(ii) Show that \mathbf{M} is singular when $\lambda=3$ and state the other value of λ for which \mathbf{M} is singular.
(b) Given that $\lambda=3$, determine the value of μ for which the following system of equations is consistent.

$$
\left[\begin{array}{lll}
3 & 1 & 2 \\
4 & 3 & 1 \\
5 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
\mu \\
2
\end{array}\right]
$$

(c) Suppose now that $\lambda=2$ so that

$$
\mathbf{M}=\left[\begin{array}{lll}
2 & 1 & 2 \\
4 & 2 & 1 \\
5 & 2 & 3
\end{array}\right]
$$

(i) Determine the adjugate matrix of \mathbf{M}.
(ii) Hence determine the inverse matrix \mathbf{M}^{-1}.
7. Use mathematical induction to prove that

$$
\begin{equation*}
\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{7}
\end{equation*}
$$

for all positive integers n.
8. The complex number z is represented by the point $P(x, y)$ in the Argand diagram and

$$
|z+2 \mathrm{i}|=2|z-3| .
$$

(a) Show that the locus of P is a circle.
(b) Find its radius and the coordinates of its centre.
9. The function f is defined on the domain $(0,2)$ by

$$
f(x)=(\sin x)^{x}
$$

(a) Show that

$$
f^{\prime}(x)=f(x) g(x)
$$

where $g(x)$ is to be determined.
(b) (i) Evaluate $g(0 \cdot 1), g(1)$ and $g(1 \cdot 6)$.
(ii) What do your three values tell you about the number of stationary points on the graph of f ?

