FRIDAY, 23 JUNE 2017 - MORNING
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator;
- statistical tables (Murdoch and Barnes or RND/WJEC Publications).

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

1. The weights, X grams, of the eggs sold in a certain farm shop have mean μ grams. To estimate μ, a random sample of 100 eggs was weighed, in grams, and the following sample statistics were calculated.

$$
\sum x=5910, \sum x^{2}=349425
$$

Calculate an approximate 99\% confidence interval for μ.
2. Each of three fair dice has its six faces numbered $1,2,3,4,5,6$ respectively. The three dice are thrown simultaneously and the score on each dice is defined as the number on the uppermost face. Let X denote the highest score on these three dice.
(a) Show that

$$
\begin{equation*}
P(X \leqslant x)=\left(\frac{x}{6}\right)^{3} \quad \text { for } x=1,2,3,4,5,6 \tag{2}
\end{equation*}
$$

(b) Deduce an expression in terms of x for $P(X=x)$, valid for $x=1,2,3,4,5,6$.
(c) Determine the most likely value of X.
3. A zoologist claims that the mean weight of male dogs of a certain breed is 5 kg more than the mean weight of female dogs of the breed. Mair believes that the difference in mean weights is greater than 5 kg . She therefore collects and weighs random samples of 50 male and 50 female dogs of the breed. She defines the following hypotheses,

$$
H_{0}: \mu_{x}-\mu_{y}=5 ; \quad H_{1}: \mu_{x}-\mu_{y}>5
$$

where μ_{x}, μ_{y} denote respectively the mean weights, in kg , of the male dogs and female dogs of the breed. The results are summarised below, where x, y denote respectively the weights, in kg , of the male dogs and the female dogs.

$$
\sum x=2055, \Sigma x^{2}=84773, \Sigma y=1745, \Sigma y^{2}=61121
$$

Determine an approximate p-value for these results and state your conclusion in context.
4. A mathematics teacher takes a biased dice to his class, wishing to estimate p, the probability of throwing a 'six'. He throws it 75 times and obtains 24 'sixes'.
(a) Calculate an approximate 95% confidence interval for p.
(b) The teacher calculates this interval and he asks Tom to interpret it. Tom states that 'There is, approximately, a 0.95 probability that the interval that the teacher has calculated contains the unknown value of p^{\prime}. Explain why this statement is incorrect and give a correct interpretation.
5. When Dawn throws the javelin, the distance thrown (in metres) can be assumed to be normally distributed with mean μ and variance σ^{2}. She throws the javelin 9 times with the following results.

$$
\begin{array}{lllllllll}
33 \cdot 5 & 34 \cdot 6 & 33 \cdot 3 & 34 \cdot 3 & 34 \cdot 6 & 34 \cdot 0 & 33 \cdot 1 & 35 \cdot 0 & 33 \cdot 6
\end{array}
$$

(a) Calculate unbiased estimates of μ and σ^{2}.
(b) Calculate a 95% confidence interval for μ.
6. The length, $y \mathrm{~cm}$, of a spring subjected to a tension of x Newtons satisfies the relationship $y=\alpha+\beta x$, where α and β are unknown constants. In order to estimate α and β, the following measurements were made.

x	10	15	20	25	30	40
y	$12 \cdot 4$	$14 \cdot 3$	$16 \cdot 4$	$18 \cdot 9$	$20 \cdot 7$	$24 \cdot 6$

You are given that $\Sigma x=140, \Sigma y=107 \cdot 3, \Sigma x^{2}=3850, \Sigma x y=2744$.
(a) Calculate least squares estimates for α and β, giving your answers correct to three significant figures.
(b) The values of x are exact but the values of y are subject to independent normally distributed measurement errors with mean zero and standard deviation $0 \cdot 2$. Before the measurements were made, Emlyn believed that the value of β was $0 \cdot 4$.
(i) State suitable hypotheses to carry out a two-sided test of Emlyn's belief.
(ii) Calculate the p-value of the above results.
(iii) State whether or not the data support Emlyn's belief.

TURN OVER

7. An electronic device generates random digits from the set $\{1,2,3,4\}$. The probability distribution of the digit generated, X, is given by

$$
P(X=x)= \begin{cases}p & \text { for } x=1 \\ \frac{(1-p)}{3} & \text { for } x=2,3,4\end{cases}
$$

where p is an unknown constant, $0<p<1$.
(a) (i) Determine an expression for $E(X)$ in terms of p.
(ii) Show that

$$
\operatorname{Var}(X)=\frac{2}{3}(1-p)(1+6 p) .
$$

(b) In order to estimate p, a random sample of n digits is generated using the device and \bar{X} denotes the sample mean.
(i) Show that

$$
U=\frac{3-\bar{X}}{2}
$$

is an unbiased estimator for p.
(ii) Determine an expression for $\operatorname{Var}(U)$ in terms of n and p.
(c) The number of digits in the random sample equal to 1 is denoted by Y.
(i) Write down the distribution of Y.
(ii) Show that

$$
V=\frac{Y}{n}
$$

is an unbiased estimator for p.
(iii) Determine an expression for $\operatorname{Var}(V)$ in terms of n and p.
(d) By considering $\frac{\operatorname{Var}(U)}{\operatorname{Var}(V)}$, determine which is the better estimator, U or V.

